Unlocking One-Step Two-Electron Oxygen Reduction via Metalloid Boron-Modified Zn3In2S6 for Efficient H2O2 Photosynthesis

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ji-Li Zhou, Dr. Yan-Fei Mu, Meng Qiao, Meng-Ran Zhang, Su-Xian Yuan, Dr. Min Zhang, Prof. Dr. Tong-Bu Lu
{"title":"Unlocking One-Step Two-Electron Oxygen Reduction via Metalloid Boron-Modified Zn3In2S6 for Efficient H2O2 Photosynthesis","authors":"Ji-Li Zhou,&nbsp;Dr. Yan-Fei Mu,&nbsp;Meng Qiao,&nbsp;Meng-Ran Zhang,&nbsp;Su-Xian Yuan,&nbsp;Dr. Min Zhang,&nbsp;Prof. Dr. Tong-Bu Lu","doi":"10.1002/anie.202506963","DOIUrl":null,"url":null,"abstract":"<p>The indirect two-step two-electron oxygen reduction reaction (2e<sup>−</sup> ORR) dominates photocatalytic H<sub>2</sub>O<sub>2</sub> synthesis but suffers from sluggish kinetics, •O<sub>2</sub><sup>−</sup>-induced catalyst degradation, and spatiotemporal carrier-intermediate mismatch. Herein, we pioneer a metal-metalloid dual-site strategy to unlock the direct one-step 2e<sup>−</sup> ORR pathway, demonstrated through boron-engineered Zn<sub>3</sub>In<sub>2</sub>S<sub>6</sub> (<b>B-ZnInS</b>) photocatalyst with In-B dual-active sites. The In-B dual-site configuration creates a charge-balanced electron reservoir by charge complementation, which achieves moderate O<sub>2</sub> adsorption via bidentate coordination and dual-channel electron transfer, preventing excessive O─O bond activation. Simultaneously, boron doping induces lattice polarization to establish a built-in electric field, quintupling photogenerated carrier lifetimes versus pristine <b>ZnInS</b>. These synergies redirect the O<sub>2</sub> activation pathway from indirect to direct 2e<sup>−</sup> ORR process, delivering an exceptional H<sub>2</sub>O<sub>2</sub> production rate of 3121 µmol g<sup>−1</sup> h<sup>−1</sup> in pure water under simulated AM 1.5G illumination (100 mW cm<sup>−2</sup>)—an 11-fold enhancement over <b>ZnInS</b>. The system achieves an unprecedented apparent quantum yield of 49.8% at 365 nm for H<sub>2</sub>O<sub>2</sub> photosynthesis among inorganic semiconducting photocatalysts, and can continuously produce medical-grade H<sub>2</sub>O<sub>2</sub> (3 wt%). This work provides insights for designing efficient H<sub>2</sub>O<sub>2</sub> photocatalysts and beyond.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 28","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506963","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The indirect two-step two-electron oxygen reduction reaction (2e ORR) dominates photocatalytic H2O2 synthesis but suffers from sluggish kinetics, •O2-induced catalyst degradation, and spatiotemporal carrier-intermediate mismatch. Herein, we pioneer a metal-metalloid dual-site strategy to unlock the direct one-step 2e ORR pathway, demonstrated through boron-engineered Zn3In2S6 (B-ZnInS) photocatalyst with In-B dual-active sites. The In-B dual-site configuration creates a charge-balanced electron reservoir by charge complementation, which achieves moderate O2 adsorption via bidentate coordination and dual-channel electron transfer, preventing excessive O─O bond activation. Simultaneously, boron doping induces lattice polarization to establish a built-in electric field, quintupling photogenerated carrier lifetimes versus pristine ZnInS. These synergies redirect the O2 activation pathway from indirect to direct 2e ORR process, delivering an exceptional H2O2 production rate of 3121 µmol g−1 h−1 in pure water under simulated AM 1.5G illumination (100 mW cm−2)—an 11-fold enhancement over ZnInS. The system achieves an unprecedented apparent quantum yield of 49.8% at 365 nm for H2O2 photosynthesis among inorganic semiconducting photocatalysts, and can continuously produce medical-grade H2O2 (3 wt%). This work provides insights for designing efficient H2O2 photocatalysts and beyond.

Abstract Image

通过类金属硼修饰Zn3In2S6解锁一步二电子氧还原,实现高效H2O2光合作用
间接两步双电子氧还原反应(2e - ORR)在光催化H2O2合成中占主导地位,但存在动力学迟缓、•O2 -诱导的催化剂降解和时空载流子-中间体失配等问题。在此,我们开创了一种金属-类金属双位点策略,通过硼工程的具有In - B双活性位点的Zn3In2S6 (B - ZnInS)光催化剂来解锁直接的一步2e - ORR途径。In - B双位点结构通过电荷互补形成电荷平衡的电子储层,通过双齿配位和双通道电子转移实现适度的O2吸附,防止过度的O - O键激活。同时,硼掺杂诱导晶格极化以建立一个内置电场,使光生载流子寿命比原始ZnInS增加了五倍。这些协同作用将O2激活途径从间接转向直接2e - ORR过程,在模拟AM 1.5G照明(100 mW cm - 2)下,在纯水中产生3121 μmol g - 1 h - 1的H2O2产率,比ZnInS提高了11倍。在无机半导体光催化剂中,该系统在365 nm下实现了前所未有的表观量子产率49.8%,并且可以连续生产医疗级H2O2 (3 wt%)。这项工作为设计高效的H2O2光催化剂及其他方面提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信