Jin Zhou , Wei Zhao , Mengjie Wu , Jiajun Wu , Jinming Zhu , Xiaowan Liu , Jing Hu , Zhonghua Cai , Leo Lai Chan
{"title":"Quorum sensing regulates the efficiency of a microcystin-degrading microbial consortium","authors":"Jin Zhou , Wei Zhao , Mengjie Wu , Jiajun Wu , Jinming Zhu , Xiaowan Liu , Jing Hu , Zhonghua Cai , Leo Lai Chan","doi":"10.1016/j.jhazmat.2025.138479","DOIUrl":null,"url":null,"abstract":"<div><div>Microbial biodegradation represents an environmentally friendly solution for microcystin (MC) removal. However, the regulatory factors influencing MC biodegradation within microbial communities remain poorly understood. We hypothesized that a consortium of MC-degrading microorganisms can synergistically enhance MC biodegradation efficiency under quorum sensing (QS) signal regulation. Initially, analysis of publicly available data identified a widespread correlation between QS signals and MC-degrading genes. Subsequent laboratory studies confirmed that acyl-homoserine lactones (AHLs) represent the predominant QS signal type during the degradation of MCs by microbial consortia. A significant positive correlation was found among the AHL signal, MC degradation genes, and microbial members of the degradation process. Finally, we found that the absence of the AHL system reduced both the efficiency of MC degradation and the expression of <em>mlr</em> cluster genes in the microbial consortium, confirming the regulatory role of the AHL system in MC degradation at the community level. The mutualistic cooperation mechanisms were also demonstrated by metatranscriptomic and qRT-PCR analyses. These findings underscore the significant role played by the QS system in microbial community-mediated MC degradation and suggest that the manipulation of QS signals could be a promising strategy for enhancing MC treatment efficiency. Harnessing microbial cooperation through QS offers a sustainable approach for mitigating MC contamination and safeguarding water health.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"494 ","pages":"Article 138479"},"PeriodicalIF":12.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425013949","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microbial biodegradation represents an environmentally friendly solution for microcystin (MC) removal. However, the regulatory factors influencing MC biodegradation within microbial communities remain poorly understood. We hypothesized that a consortium of MC-degrading microorganisms can synergistically enhance MC biodegradation efficiency under quorum sensing (QS) signal regulation. Initially, analysis of publicly available data identified a widespread correlation between QS signals and MC-degrading genes. Subsequent laboratory studies confirmed that acyl-homoserine lactones (AHLs) represent the predominant QS signal type during the degradation of MCs by microbial consortia. A significant positive correlation was found among the AHL signal, MC degradation genes, and microbial members of the degradation process. Finally, we found that the absence of the AHL system reduced both the efficiency of MC degradation and the expression of mlr cluster genes in the microbial consortium, confirming the regulatory role of the AHL system in MC degradation at the community level. The mutualistic cooperation mechanisms were also demonstrated by metatranscriptomic and qRT-PCR analyses. These findings underscore the significant role played by the QS system in microbial community-mediated MC degradation and suggest that the manipulation of QS signals could be a promising strategy for enhancing MC treatment efficiency. Harnessing microbial cooperation through QS offers a sustainable approach for mitigating MC contamination and safeguarding water health.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.