Kunhui Ye, Judah Cohen, Hans W. Chen, Shiyue Zhang, Dehai Luo, Mostafa Essam Hamouda
{"title":"Attributing climate and weather extremes to Northern Hemisphere sea ice and terrestrial snow: progress, challenges and ways forward","authors":"Kunhui Ye, Judah Cohen, Hans W. Chen, Shiyue Zhang, Dehai Luo, Mostafa Essam Hamouda","doi":"10.1038/s41612-025-01012-0","DOIUrl":null,"url":null,"abstract":"<p>Sea ice and snow are crucial components of the cryosphere and the climate system. Both sea ice and spring snow in the Northern Hemisphere (NH) have been decreasing at an alarming rate in a changing climate. Changes in NH sea ice and snow have been linked with a variety of climate and weather extremes including cold spells, heatwaves, droughts and wildfires. Understanding of these linkages will benefit the predictions of climate and weather extremes. However, existing work on this has been largely fragmented and is subject to large uncertainties in physical pathways and methodologies. This has prevented further substantial progress in attributing climate and weather extremes to sea ice and snow change, and will potentially risk the loss of a critical window for effective climate change mitigation. In this review, we synthesize the current progress in attributing climate and weather extremes to sea ice and snow change by evaluating the observed linkages, their physical pathways and uncertainties in these pathways, and suggesting ways forward for future research efforts. By adopting the same framework for both sea ice and snow, we highlight their combined influence and the cryospheric feedback to the climate system. We suggest that future research will benefit from improving observational networks, addressing the causality and complexity of the linkages using multiple lines of evidence, adopting large-ensemble approaches and artificial intelligence, achieving synergy between different methodologies/disciplines, widening the context, and coordinated international collaboration.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"18 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-01012-0","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sea ice and snow are crucial components of the cryosphere and the climate system. Both sea ice and spring snow in the Northern Hemisphere (NH) have been decreasing at an alarming rate in a changing climate. Changes in NH sea ice and snow have been linked with a variety of climate and weather extremes including cold spells, heatwaves, droughts and wildfires. Understanding of these linkages will benefit the predictions of climate and weather extremes. However, existing work on this has been largely fragmented and is subject to large uncertainties in physical pathways and methodologies. This has prevented further substantial progress in attributing climate and weather extremes to sea ice and snow change, and will potentially risk the loss of a critical window for effective climate change mitigation. In this review, we synthesize the current progress in attributing climate and weather extremes to sea ice and snow change by evaluating the observed linkages, their physical pathways and uncertainties in these pathways, and suggesting ways forward for future research efforts. By adopting the same framework for both sea ice and snow, we highlight their combined influence and the cryospheric feedback to the climate system. We suggest that future research will benefit from improving observational networks, addressing the causality and complexity of the linkages using multiple lines of evidence, adopting large-ensemble approaches and artificial intelligence, achieving synergy between different methodologies/disciplines, widening the context, and coordinated international collaboration.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.