Improving Planetary Boundary Layer Height Estimation From Airborne Lidar Instruments

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
J. A. Christopoulos, P. E. Saide, R. Ferrare, B. Collister, R. A. Barton-Grimley, A. J. Scarino, J. Collins, J. W. Hair, A. Nehrir
{"title":"Improving Planetary Boundary Layer Height Estimation From Airborne Lidar Instruments","authors":"J. A. Christopoulos,&nbsp;P. E. Saide,&nbsp;R. Ferrare,&nbsp;B. Collister,&nbsp;R. A. Barton-Grimley,&nbsp;A. J. Scarino,&nbsp;J. Collins,&nbsp;J. W. Hair,&nbsp;A. Nehrir","doi":"10.1029/2024JD042538","DOIUrl":null,"url":null,"abstract":"<p>The height of the planetary boundary layer (PBLH) influences processes such as pollutant distributions, convection, and cloud formation within the troposphere. Aerosol observables play a critical role in deriving the mixed layer height (MLH) using retrieval techniques like the Haar wavelet covariance transform (WCT), which employs gradients in aerosol backscatter to estimate MLH. Currently, backscatter-only approaches struggle with identifying very shallow stable boundary layers, distinguishing PBL from lofted residual or other aerosol layers, and profiles with very low aerosol loading. Here, we reflect on the WCT method's performance and evaluate different approaches to improve PBLH estimations. We aggregate lidar observables from recent NASA airborne field campaigns and compute MLHs based on the WCT method. Machine learning (ML) approaches are explored to produce PBLH estimates by training lidar information on thermodynamically derived PBLHs over marine and land settings. A linear model is found suitable for producing PBLH estimates in marine settings (improving mean bias by 71 m), while an ensemble tree method proves more suitable for PBLH types over land, as indicated by improved biases (13 m mean bias), errors (179 m mean error and 391 m RMSE), and correlations (+0.3) for the models explored. The algorithms are additionally tested on “unseen” data to gauge differences between MLH and PBLH estimates produced from each of the models. The PBLH estimates, composed of information from lidar and thermodynamic profiles, further support the use of ML for an automated method of PBLH prediction. Overall, these improved predictions will help evaluate models and deepen our understanding of PBL-aerosol interactions.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 9","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042538","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042538","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The height of the planetary boundary layer (PBLH) influences processes such as pollutant distributions, convection, and cloud formation within the troposphere. Aerosol observables play a critical role in deriving the mixed layer height (MLH) using retrieval techniques like the Haar wavelet covariance transform (WCT), which employs gradients in aerosol backscatter to estimate MLH. Currently, backscatter-only approaches struggle with identifying very shallow stable boundary layers, distinguishing PBL from lofted residual or other aerosol layers, and profiles with very low aerosol loading. Here, we reflect on the WCT method's performance and evaluate different approaches to improve PBLH estimations. We aggregate lidar observables from recent NASA airborne field campaigns and compute MLHs based on the WCT method. Machine learning (ML) approaches are explored to produce PBLH estimates by training lidar information on thermodynamically derived PBLHs over marine and land settings. A linear model is found suitable for producing PBLH estimates in marine settings (improving mean bias by 71 m), while an ensemble tree method proves more suitable for PBLH types over land, as indicated by improved biases (13 m mean bias), errors (179 m mean error and 391 m RMSE), and correlations (+0.3) for the models explored. The algorithms are additionally tested on “unseen” data to gauge differences between MLH and PBLH estimates produced from each of the models. The PBLH estimates, composed of information from lidar and thermodynamic profiles, further support the use of ML for an automated method of PBLH prediction. Overall, these improved predictions will help evaluate models and deepen our understanding of PBL-aerosol interactions.

Abstract Image

改进机载激光雷达估算行星边界层高度的方法
行星边界层(PBLH)的高度影响对流层内污染物分布、对流和云的形成等过程。利用Haar小波协方差变换(WCT)等反演技术,利用气溶胶后向散射的梯度估计混合层高度,气溶胶观测值在得到混合层高度(MLH)方面发挥着关键作用。目前,仅靠后向散射的方法难以识别非常浅的稳定边界层,区分PBL与悬浮残余层或其他气溶胶层,以及气溶胶负荷非常低的剖面。在这里,我们反思了WCT方法的性能,并评估了改进PBLH估计的不同方法。我们收集了最近NASA机载野外战役的激光雷达观测数据,并基于WCT方法计算了mlh。探索机器学习(ML)方法,通过训练海洋和陆地环境中热力学衍生的PBLH的激光雷达信息来产生PBLH估计。发现线性模型适合在海洋环境中产生PBLH估计(将平均偏差提高71 m),而集成树方法被证明更适合陆地上的PBLH类型,如改进的偏差(13 m平均偏差),误差(179 m平均误差和391 m RMSE)和相关性(+0.3)所示。算法还在“看不见的”数据上进行测试,以衡量每个模型产生的MLH和PBLH估计值之间的差异。由激光雷达和热力学剖面信息组成的PBLH估计进一步支持ML用于PBLH预测的自动化方法。总的来说,这些改进的预测将有助于评估模型并加深我们对多溴联苯-气溶胶相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信