{"title":"Innovative laccase-based hollow packed-bed reactor for continuous treatment of hospital wastewater","authors":"Komla Alokpa, Linson Lonappan, Hubert Cabana","doi":"10.1007/s11356-025-36395-3","DOIUrl":null,"url":null,"abstract":"<div><p>This study reports on laccase-mediated removal of trace organic compounds (TrOCs) from real hospital wastewater (HWW) in a packed-bed reactor (PBR). The reactor column consisted of a catalytic bed of amino-functionalized mesoporous silica microspheres attached to a hollow polyethylene packing on which a <i>Trametes hirsuta</i> laccase was immobilized. This bed material had the advantage of significantly limiting pressure drop, which is one of the major drawbacks of PBRs operating in continuous mode. The PBR was fed with HWW, previously filtered through a 0.45-µm PTFE filter. The HWW was used either unspiked or spiked at 1 µg L<sup>−1</sup> with acetaminophen, ibuprofen, naproxen, ketoprofen, mefenamic acid, indomethacin, and carbamazepine. A kinetic model combining the substrate conversion (1st-order kinetic) and the biocatalyst inactivation (1st-order kinetic) was developed and implemented, using acetaminophen as a model phenolic compound. After validation, the model showed good fit with experimental data and robustness regarding extended time operation with real HWW under uncontrolled conditions (pH, unbuffered media, ambient temperature). After 6 h of contact time, more than 95% of acetaminophen and mefenamic acid were removed in the PBR. In addition, toxicity tests showed that the laccase-based treatment resulted in a reduction in toxicity to <i>Daphnia magna</i>. The treated HWW did not significantly affect the mobility of <i>Daphnia magna</i>, unlike untreated HWW.</p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"32 19","pages":"12027 - 12048"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-025-36395-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study reports on laccase-mediated removal of trace organic compounds (TrOCs) from real hospital wastewater (HWW) in a packed-bed reactor (PBR). The reactor column consisted of a catalytic bed of amino-functionalized mesoporous silica microspheres attached to a hollow polyethylene packing on which a Trametes hirsuta laccase was immobilized. This bed material had the advantage of significantly limiting pressure drop, which is one of the major drawbacks of PBRs operating in continuous mode. The PBR was fed with HWW, previously filtered through a 0.45-µm PTFE filter. The HWW was used either unspiked or spiked at 1 µg L−1 with acetaminophen, ibuprofen, naproxen, ketoprofen, mefenamic acid, indomethacin, and carbamazepine. A kinetic model combining the substrate conversion (1st-order kinetic) and the biocatalyst inactivation (1st-order kinetic) was developed and implemented, using acetaminophen as a model phenolic compound. After validation, the model showed good fit with experimental data and robustness regarding extended time operation with real HWW under uncontrolled conditions (pH, unbuffered media, ambient temperature). After 6 h of contact time, more than 95% of acetaminophen and mefenamic acid were removed in the PBR. In addition, toxicity tests showed that the laccase-based treatment resulted in a reduction in toxicity to Daphnia magna. The treated HWW did not significantly affect the mobility of Daphnia magna, unlike untreated HWW.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.