{"title":"Fine extraction of multi-crop planting area based on deep learning with Sentinel- 2 time-series data","authors":"Jingmin Jiang, Jiahua Zhang, Xue Wang, Shichao Zhang, Delong Kong, Xiaopeng Wang, Shawkat Ali, Hidayat Ullah","doi":"10.1007/s11356-025-36405-4","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate and timely access to the spatial distribution of crops is crucial for sustainable agricultural development and food security. However, extracting multi-crop areas based on high-resolution time-series data and deep learning still faces challenges. Therefore, this study aims to provide an effective model for multi-crop classification using high-resolution remote sensing time-series data. We designed two deep learning models based on convolutional neural network-long short-term memory (CNN-LSTM) and bidirectional long short-term memory (Bi-LSTM). The monthly synthetic time series of the normalized difference vegetation index (NDVI) from Sentinel-2 data will be used as input features to extract the multi-crop planting area in Shandong province’s northwestern, southwestern, and eastern regions. The results showed that deep learning models achieved higher accuracy compared to the random forest (RF) and extreme gradient boosting (XGBoost) models, with CNN-LSTM achieving the highest overall accuracy of 96.48%. At the county level, the coefficients of determination (<i>R</i><sup>2</sup>) for the CNN-LSTM model were 0.91 for wheat, 0.88 for maize, and 0.73 for spring cotton. This study demonstrates that the CNN-LSTM model combined with monthly synthetic time-series NDVI provides a feasible approach for accurately mapping high-resolution multi-crop planting areas and also contributes significantly to decision support and resource management in agricultural production. </p></div>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":"32 19","pages":"11931 - 11949"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11356-025-36405-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate and timely access to the spatial distribution of crops is crucial for sustainable agricultural development and food security. However, extracting multi-crop areas based on high-resolution time-series data and deep learning still faces challenges. Therefore, this study aims to provide an effective model for multi-crop classification using high-resolution remote sensing time-series data. We designed two deep learning models based on convolutional neural network-long short-term memory (CNN-LSTM) and bidirectional long short-term memory (Bi-LSTM). The monthly synthetic time series of the normalized difference vegetation index (NDVI) from Sentinel-2 data will be used as input features to extract the multi-crop planting area in Shandong province’s northwestern, southwestern, and eastern regions. The results showed that deep learning models achieved higher accuracy compared to the random forest (RF) and extreme gradient boosting (XGBoost) models, with CNN-LSTM achieving the highest overall accuracy of 96.48%. At the county level, the coefficients of determination (R2) for the CNN-LSTM model were 0.91 for wheat, 0.88 for maize, and 0.73 for spring cotton. This study demonstrates that the CNN-LSTM model combined with monthly synthetic time-series NDVI provides a feasible approach for accurately mapping high-resolution multi-crop planting areas and also contributes significantly to decision support and resource management in agricultural production.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.