A. V. Khramenkova, D. N. Izvarina, V. V. Moshchenko, V. A. Smoliy, L. V. Klimova, O. E. Polozhentsev, A. N. Kuznetsov, K. M. Popov
{"title":"Chitosan complex based hybrid material as catalyst for hydrogen evolution reaction","authors":"A. V. Khramenkova, D. N. Izvarina, V. V. Moshchenko, V. A. Smoliy, L. V. Klimova, O. E. Polozhentsev, A. N. Kuznetsov, K. M. Popov","doi":"10.1007/s11705-025-2550-5","DOIUrl":null,"url":null,"abstract":"<div><p>The hybrid material based on polyelectrolyte complexes of chitosan with oxycompounds of cobalt and nickel was electrodeposited on a stainless steel plate using the method of non-stationary electrolysis. The hybrid material layer was investigated by scanning electron microscopy, atomic force microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, and Raman spectroscopy. The electrocatalytic properties of the hybrid material were studied in the hydrogen evolution reaction in alkaline electrolyte (1 mol·L<sup>−1</sup> NaOH). It was determined that during the initial four-hour period of the hydrogen evolution process, the overpotential underwent a substantial decline, remaining constant for a minimum of 17 h thereafter, from 289 up to 210 mV at −10 mA·cm<sup>−2</sup>. After a long-term hydrogen evolution, the activity of the hybrid material electrode exceeded hydrogen evolution reaction activity by 20% Pt/C commercial catalyst at a high current density of −100 mA·cm<sup>−2</sup>.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2550-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The hybrid material based on polyelectrolyte complexes of chitosan with oxycompounds of cobalt and nickel was electrodeposited on a stainless steel plate using the method of non-stationary electrolysis. The hybrid material layer was investigated by scanning electron microscopy, atomic force microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller method, Fourier transform infrared spectroscopy, and Raman spectroscopy. The electrocatalytic properties of the hybrid material were studied in the hydrogen evolution reaction in alkaline electrolyte (1 mol·L−1 NaOH). It was determined that during the initial four-hour period of the hydrogen evolution process, the overpotential underwent a substantial decline, remaining constant for a minimum of 17 h thereafter, from 289 up to 210 mV at −10 mA·cm−2. After a long-term hydrogen evolution, the activity of the hybrid material electrode exceeded hydrogen evolution reaction activity by 20% Pt/C commercial catalyst at a high current density of −100 mA·cm−2.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.