{"title":"Word2State: Modeling Word Representations as States with Density Matrices","authors":"Chenchen Zhang;Qiuchi Li;Zhan Su;Dawei Song","doi":"10.23919/cje.2023.00.336","DOIUrl":null,"url":null,"abstract":"Polysemy is a common phenomenon in linguistics. Quantum-inspired complex word embeddings based on Semantic Hilbert Space play an important role in natural language processing, which may accurately define a genuine probability distribution over the word space. The existing quantum-inspired works manipulate on the real-valued vectors to compose the complex-valued word embeddings, which lack direct complex-valued pre-trained word representations. Motivated by quantum-inspired complex word embeddings, we propose a complex-valued pre-trained word embedding based on density matrices, called Word2State. Unlike the existing static word embeddings, our proposed model can provide non-linear semantic composition in the form of amplitude and phase, which also defines an authentic probabilistic distribution. We evaluate this model on twelve datasets from the word similarity task and six datasets from the relevant downstream tasks. The experimental results on different tasks demonstrate that our proposed pre-trained word embedding can capture richer semantic information and exhibit greater flexibility in expressing uncertainty.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 2","pages":"649-660"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10982096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10982096/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Polysemy is a common phenomenon in linguistics. Quantum-inspired complex word embeddings based on Semantic Hilbert Space play an important role in natural language processing, which may accurately define a genuine probability distribution over the word space. The existing quantum-inspired works manipulate on the real-valued vectors to compose the complex-valued word embeddings, which lack direct complex-valued pre-trained word representations. Motivated by quantum-inspired complex word embeddings, we propose a complex-valued pre-trained word embedding based on density matrices, called Word2State. Unlike the existing static word embeddings, our proposed model can provide non-linear semantic composition in the form of amplitude and phase, which also defines an authentic probabilistic distribution. We evaluate this model on twelve datasets from the word similarity task and six datasets from the relevant downstream tasks. The experimental results on different tasks demonstrate that our proposed pre-trained word embedding can capture richer semantic information and exhibit greater flexibility in expressing uncertainty.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.