Multibranch Generative Models for Multichannel Imaging With an Application to PET/CT Synergistic Reconstruction

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Noel Jeffrey Pinton;Alexandre Bousse;Catherine Cheze-Le-Rest;Dimitris Visvikis
{"title":"Multibranch Generative Models for Multichannel Imaging With an Application to PET/CT Synergistic Reconstruction","authors":"Noel Jeffrey Pinton;Alexandre Bousse;Catherine Cheze-Le-Rest;Dimitris Visvikis","doi":"10.1109/TRPMS.2025.3532176","DOIUrl":null,"url":null,"abstract":"This article presents a novel approach for learned synergistic reconstruction of medical images using multibranch generative models. Leveraging variational autoencoders (VAEs), our model learns from pairs of images simultaneously, enabling effective denoising and reconstruction. Synergistic image reconstruction is achieved by incorporating the trained models in a regularizer that evaluates the distance between the images and the model. We demonstrate the efficacy of our approach on both Modified National Institute of Standards and Technology (MNIST) and positron emission tomography (PET)/computed tomography (CT) datasets, showcasing improved image quality for low-dose imaging. Despite challenges, such as patch decomposition and model limitations, our results underscore the potential of generative models for enhancing medical imaging reconstruction.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"9 5","pages":"654-666"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10847890/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a novel approach for learned synergistic reconstruction of medical images using multibranch generative models. Leveraging variational autoencoders (VAEs), our model learns from pairs of images simultaneously, enabling effective denoising and reconstruction. Synergistic image reconstruction is achieved by incorporating the trained models in a regularizer that evaluates the distance between the images and the model. We demonstrate the efficacy of our approach on both Modified National Institute of Standards and Technology (MNIST) and positron emission tomography (PET)/computed tomography (CT) datasets, showcasing improved image quality for low-dose imaging. Despite challenges, such as patch decomposition and model limitations, our results underscore the potential of generative models for enhancing medical imaging reconstruction.
多通道成像的多分支生成模型及其在PET/CT协同重建中的应用
本文提出了一种利用多分支生成模型进行医学图像学习协同重建的新方法。利用变分自编码器(VAEs),我们的模型同时从成对的图像中学习,从而实现有效的去噪和重建。协同图像重建是通过将训练好的模型合并到一个正则化器中来实现的,该正则化器评估图像和模型之间的距离。我们证明了我们的方法在修改国家标准与技术研究所(MNIST)和正电子发射断层扫描(PET)/计算机断层扫描(CT)数据集上的有效性,展示了低剂量成像的图像质量改进。尽管存在诸如斑块分解和模型限制等挑战,但我们的研究结果强调了生成模型在增强医学成像重建方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信