Stereo Hand-Object Reconstruction for Human-to-Robot Handover

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Yik Lung Pang;Alessio Xompero;Changjae Oh;Andrea Cavallaro
{"title":"Stereo Hand-Object Reconstruction for Human-to-Robot Handover","authors":"Yik Lung Pang;Alessio Xompero;Changjae Oh;Andrea Cavallaro","doi":"10.1109/LRA.2025.3562790","DOIUrl":null,"url":null,"abstract":"Jointly estimating hand and object shape facilitates the grasping task in human-to-robot handovers. Relying on hand-crafted prior knowledge about the geometric structure of the object fails when generalising to unseen objects, and depth sensors fail to detect transparent objects such as drinking glasses. In this work, we propose a method for hand-object reconstruction that combines single-view reconstructions probabilistically to form a coherent stereo reconstruction. We learn 3D shape priors from a large synthetic hand-object dataset, and use RGB inputs to better capture transparent objects. We show that our method reduces the object Chamfer distance compared to existing RGB based hand-object reconstruction methods on single view and stereo settings. We process the reconstructed hand-object shape with a projection-based outlier removal step and use the output to guide a human-to-robot handover pipeline with wide-baseline stereo RGB cameras. Our hand-object reconstruction enables a robot to successfully receive a diverse range of household objects from the human.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"5761-5768"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10971203/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Jointly estimating hand and object shape facilitates the grasping task in human-to-robot handovers. Relying on hand-crafted prior knowledge about the geometric structure of the object fails when generalising to unseen objects, and depth sensors fail to detect transparent objects such as drinking glasses. In this work, we propose a method for hand-object reconstruction that combines single-view reconstructions probabilistically to form a coherent stereo reconstruction. We learn 3D shape priors from a large synthetic hand-object dataset, and use RGB inputs to better capture transparent objects. We show that our method reduces the object Chamfer distance compared to existing RGB based hand-object reconstruction methods on single view and stereo settings. We process the reconstructed hand-object shape with a projection-based outlier removal step and use the output to guide a human-to-robot handover pipeline with wide-baseline stereo RGB cameras. Our hand-object reconstruction enables a robot to successfully receive a diverse range of household objects from the human.
面向人机切换的立体手-物重建
手和物体形状的联合估计有助于人机切换中的抓取任务。依靠手工制作的物体几何结构的先验知识在推广到看不见的物体时失败了,深度传感器无法检测到透明物体,如玻璃杯。在这项工作中,我们提出了一种手-物体重建方法,该方法将单视图重建概率结合起来,形成连贯的立体重建。我们从一个大型合成手物体数据集中学习3D形状先验,并使用RGB输入来更好地捕获透明物体。我们表明,与现有的基于RGB的单视图和立体设置的手动物体重建方法相比,我们的方法减少了物体的倒角距离。我们使用基于投影的离群值去除步骤处理重建的手-物体形状,并使用输出来指导具有宽基线立体RGB相机的人机切换管道。我们的手-物体重建使机器人能够成功地从人类那里接收各种各样的家居物品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信