{"title":"Aluminium oxide nanoparticles (Al2O3-NPs) exposure impairs cardiovascular physiology and elevates health risk – proteomic and molecular mechanistic insights","authors":"Gobichettipalayam Balasubramaniam Maadurshni , Balamurali Mahalakshmi , Manikandan Nagarajan , Jeganathan Manivannan","doi":"10.1016/j.scitotenv.2025.179576","DOIUrl":null,"url":null,"abstract":"<div><div>The interactions of nanoparticles with biomolecules lead to toxicopathological outcomes through various mechanisms including oxidative stress. In this regard, the interplay of oxidative stress with other molecular mechanisms of cytotoxicity during aluminium oxide nanoparticles (Al<sub>2</sub>O<sub>3</sub>-NPs) induced cardiovascular toxicity was not yet precisely explored. Initially, the human serum protein interaction and its corona composition were explored through the gel/label-free proteomics (nLC-HRMS/MS) method. In addition, endothelial cells (EC) and cardiomyoblasts (CM) cultures were employed along with various oxidative stress and cell stress assays. Further, various expression studies (RT-qPCR, western blot, and immunofluorescence), kinase signalling, and siRNA mediated gene knockout assays were performed. Alongside, the <em>in ovo</em> impact on antioxidant enzymes and metabolomic pathways (<sup>1</sup>H NMR) in the heart validated the role of oxidative stress during cardiotoxicity. The current outcome illustrates the dose-dependent increase of cytotoxicity and caspase (3 and 9) activation. The dose-dependent elevation and its synergy with cardiovascular stress signalling (ET-1 and Ang-II) illustrate the prominent role of oxidative stress during toxicity. In conclusion, the current study connects the role of the redox system and molecular stress pathways during Al<sub>2</sub>O<sub>3</sub>-NPs induced cardiotoxicity which extends the knowledge towards the precise health risk assessment during human exposure.</div></div>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"980 ","pages":"Article 179576"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048969725012173","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The interactions of nanoparticles with biomolecules lead to toxicopathological outcomes through various mechanisms including oxidative stress. In this regard, the interplay of oxidative stress with other molecular mechanisms of cytotoxicity during aluminium oxide nanoparticles (Al2O3-NPs) induced cardiovascular toxicity was not yet precisely explored. Initially, the human serum protein interaction and its corona composition were explored through the gel/label-free proteomics (nLC-HRMS/MS) method. In addition, endothelial cells (EC) and cardiomyoblasts (CM) cultures were employed along with various oxidative stress and cell stress assays. Further, various expression studies (RT-qPCR, western blot, and immunofluorescence), kinase signalling, and siRNA mediated gene knockout assays were performed. Alongside, the in ovo impact on antioxidant enzymes and metabolomic pathways (1H NMR) in the heart validated the role of oxidative stress during cardiotoxicity. The current outcome illustrates the dose-dependent increase of cytotoxicity and caspase (3 and 9) activation. The dose-dependent elevation and its synergy with cardiovascular stress signalling (ET-1 and Ang-II) illustrate the prominent role of oxidative stress during toxicity. In conclusion, the current study connects the role of the redox system and molecular stress pathways during Al2O3-NPs induced cardiotoxicity which extends the knowledge towards the precise health risk assessment during human exposure.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.