Probabilistic modeling of heterogeneous radioactive waste for uranium radioactivity quantification using an AI-based surrogate model and Bayesian inference

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Jichang Ryu , Gyuseung Cho , Jungsuk Park , Wookjin Han
{"title":"Probabilistic modeling of heterogeneous radioactive waste for uranium radioactivity quantification using an AI-based surrogate model and Bayesian inference","authors":"Jichang Ryu ,&nbsp;Gyuseung Cho ,&nbsp;Jungsuk Park ,&nbsp;Wookjin Han","doi":"10.1016/j.net.2025.103670","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by three-to six-fold over conventional deterministic variable-based nondestructive gamma spectrometry.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 9","pages":"Article 103670"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325002384","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a modeling method applicable in situations where information regarding the physical geometry, chemical composition, and source distribution of the measured object is limited. In gamma spectrometry, reference materials or Monte Carlo simulations can be used for detection efficiency calibration. In the case of radioactive waste, using reference materials is challenging, making Monte Carlo simulations generally preferred. However, simulation accuracy diminishes for heterogeneous waste with scant detailed information. To address this challenge, we introduce a probabilistic waste matrix model for estimating the radioactivity of heterogeneous waste. Model parameters are determined using Bayesian inference, and an AI-based surrogate model is employed to generate spectra for likelihood evaluation. Our approach simplifies the complex geometry of radioactive waste into a unified structure with void regions and approximates its diverse chemical composition using three representative elements chosen based on mass attenuation coefficient ratios. Tests using synthetic datasets and experiments indicate that the proposed method enhances uranium radioactivity estimates by three-to six-fold over conventional deterministic variable-based nondestructive gamma spectrometry.
基于人工智能代理模型和贝叶斯推理的非均质放射性废物铀放射性量化概率建模
在本研究中,我们提出了一种适用于被测物体的物理几何、化学成分和源分布信息有限的情况下的建模方法。在伽马能谱法中,参考物质或蒙特卡罗模拟可用于检测效率校准。在放射性废物的情况下,使用参考材料是具有挑战性的,因此蒙特卡罗模拟通常是首选。然而,在缺乏详细信息的情况下,模拟精度会降低。为了解决这一挑战,我们引入了一个概率废物矩阵模型来估计非均质废物的放射性。采用贝叶斯推理确定模型参数,并采用基于人工智能的代理模型生成谱进行似然评估。我们的方法将放射性废物的复杂几何结构简化为具有空洞区域的统一结构,并使用基于质量衰减系数比选择的三种代表性元素来近似其不同的化学成分。使用合成数据集和实验进行的测试表明,与传统的基于确定性变量的无损伽马能谱法相比,所提出的方法将铀放射性估计提高了3至6倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信