Construction and optimization of low carbon-to-nitrogen ratio-adapted Chlorococcum-Bacteria symbiosis for energy-efficient wastewater remediation

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Ru Yan , Han Ji , Zhuo-Chao Liu , Mei-Qi Ren , Shuai Wang , Li-Ming Yang , Dan Cui
{"title":"Construction and optimization of low carbon-to-nitrogen ratio-adapted Chlorococcum-Bacteria symbiosis for energy-efficient wastewater remediation","authors":"Ru Yan ,&nbsp;Han Ji ,&nbsp;Zhuo-Chao Liu ,&nbsp;Mei-Qi Ren ,&nbsp;Shuai Wang ,&nbsp;Li-Ming Yang ,&nbsp;Dan Cui","doi":"10.1016/j.biortech.2025.132601","DOIUrl":null,"url":null,"abstract":"<div><div>This study developed a microalgae-bacteria symbiosis (MBS) system using <em>Chlorococcum robustum</em> AY122332.1 isolated from rare earth tailings wastewater to treat synthetic municipal wastewater. Systematic optimization identified a 1:1 bacteria-microalgae ratio (MBS 1) as optimal, achieving nearly 100 % removal of ammonia and 92.2 ± 0.6 % of chemical oxygen demand. Microbial community analysis identified significant enrichment of nitrogen-transforming consortia in MBS 1, particularly <em>Thauera</em> (7.43 % relative abundance), whose nitrite reductase activity and polyhydroxyalkanoate biosynthesis capacity enhanced simultaneous nitrification–denitrification. The optimized system showed superior stability with an elevated zeta potential (+17.72 mV) driven by protein-rich extracellular polymeric substances production and humic acid accumulation. These biopolymers facilitated microaggregate formation through ligand bridging and hydrophobic interactions, creating redox-stratified microenvironments that supported functional microbial niches. The synergistic interactions in the MBS system enabled efficient nutrient recovery while maintaining ecological resilience under carbon-limited conditions, providing new insights into sustainable wastewater bioremediation processes.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"431 ","pages":"Article 132601"},"PeriodicalIF":9.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096085242500567X","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This study developed a microalgae-bacteria symbiosis (MBS) system using Chlorococcum robustum AY122332.1 isolated from rare earth tailings wastewater to treat synthetic municipal wastewater. Systematic optimization identified a 1:1 bacteria-microalgae ratio (MBS 1) as optimal, achieving nearly 100 % removal of ammonia and 92.2 ± 0.6 % of chemical oxygen demand. Microbial community analysis identified significant enrichment of nitrogen-transforming consortia in MBS 1, particularly Thauera (7.43 % relative abundance), whose nitrite reductase activity and polyhydroxyalkanoate biosynthesis capacity enhanced simultaneous nitrification–denitrification. The optimized system showed superior stability with an elevated zeta potential (+17.72 mV) driven by protein-rich extracellular polymeric substances production and humic acid accumulation. These biopolymers facilitated microaggregate formation through ligand bridging and hydrophobic interactions, creating redox-stratified microenvironments that supported functional microbial niches. The synergistic interactions in the MBS system enabled efficient nutrient recovery while maintaining ecological resilience under carbon-limited conditions, providing new insights into sustainable wastewater bioremediation processes.

Abstract Image

适应低碳氮比的绿球菌-细菌共生系统的构建与优化
本研究利用从稀土尾矿废水中分离得到的绿球菌(chlorococum robustum) AY122332.1,建立了微藻-细菌共生(MBS)系统处理城市合成废水。系统优化优选出1:1的细菌-微藻比(MBS 1)为最佳,氨氮去除率接近100%,化学需氧量去除率为92.2±0.6%。微生物群落分析发现,MBS 1中氮转化菌群显著富集,特别是Thauera(相对丰度为7.43%),其亚硝酸盐还原酶活性和聚羟基烷酸酯生物合成能力增强了同时硝化-反硝化作用。在富含蛋白质的胞外聚合物质的产生和腐植酸积累的驱动下,优化后的体系具有良好的稳定性,zeta电位升高(+17.72 mV)。这些生物聚合物通过配体桥接和疏水相互作用促进了微聚集体的形成,创造了氧化还原分层的微环境,支持功能性微生物生态位。在碳限制条件下,MBS系统中的协同作用能够有效地回收养分,同时保持生态弹性,为可持续的废水生物修复过程提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信