Co-incorporation of lattice S and P into nano zero-valent iron induces multiple Kirkendall effects for enhanced trichloroethylene reduction efficiently
{"title":"Co-incorporation of lattice S and P into nano zero-valent iron induces multiple Kirkendall effects for enhanced trichloroethylene reduction efficiently","authors":"Yinghao Shi , Honghong Lyu , Saisai Guo , Jiaming Guo , Feilong Gao , Jingchun Tang","doi":"10.1016/j.jhazmat.2025.138402","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional zero-valent iron (ZVI) materials are limited by the constraints of reactivity-selectivity-stability trade-offs, so designing multi-heteroatom co-modified ZVI with synergistic effects is gradually gaining popularity. Herein, we developed a novel co-modified nZVI by simultaneously doping sulfur (S) and phosphorus (P) heteroatoms into nZVI using the one-step liquid-phase reduction method. In this case, the faster diffusion rate of core iron atoms compared to shell components triggeres multiple Kirkendall effects, causing the inward diffusion of vacancies with further coalescing into radial nanocracks. Regarding the reactivity and selectivity, sulfidation and phosphorylation co-modified nZVI exhibited the best performance, with a trichloroethylene (TCE) dechlorination rate (<span><math><msub><mrow><mi>k</mi></mrow><mrow><mi>obs</mi><mo>,</mo><mi>TCE</mi></mrow></msub></math></span>) of 0.65 h<sup>−1</sup> and an electron efficiency (<span><math><msub><mrow><mi>ε</mi></mrow><mrow><mi>e</mi></mrow></msub></math></span>) of 14.5 %, which are 20.9 and 13.8 times higher than those of unmodified nZVI. A series of characterizations and electrochemical analyses indicated that S and P doping significantly altered the physicochemical properties of the core and shell layers, generating distinctive “lemon slice” nanocracks that could be used as electron transport channels, and <span><math><msub><mrow><mtext>FeS</mtext></mrow><mrow><mtext>X</mtext></mrow></msub></math></span> significantly reduced the availability of hydrogen evolution reaction (HER) active surface sites and attenuates the passivation of nZVI. In addition, the co-modified S/P-nZVI exhibited excellent stability in different groundwater conditions, indicating its strong potential for application.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"494 ","pages":"Article 138402"},"PeriodicalIF":12.2000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425013172","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional zero-valent iron (ZVI) materials are limited by the constraints of reactivity-selectivity-stability trade-offs, so designing multi-heteroatom co-modified ZVI with synergistic effects is gradually gaining popularity. Herein, we developed a novel co-modified nZVI by simultaneously doping sulfur (S) and phosphorus (P) heteroatoms into nZVI using the one-step liquid-phase reduction method. In this case, the faster diffusion rate of core iron atoms compared to shell components triggeres multiple Kirkendall effects, causing the inward diffusion of vacancies with further coalescing into radial nanocracks. Regarding the reactivity and selectivity, sulfidation and phosphorylation co-modified nZVI exhibited the best performance, with a trichloroethylene (TCE) dechlorination rate () of 0.65 h−1 and an electron efficiency () of 14.5 %, which are 20.9 and 13.8 times higher than those of unmodified nZVI. A series of characterizations and electrochemical analyses indicated that S and P doping significantly altered the physicochemical properties of the core and shell layers, generating distinctive “lemon slice” nanocracks that could be used as electron transport channels, and significantly reduced the availability of hydrogen evolution reaction (HER) active surface sites and attenuates the passivation of nZVI. In addition, the co-modified S/P-nZVI exhibited excellent stability in different groundwater conditions, indicating its strong potential for application.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.