A decision tree algorithm based on adaptive entropy of feature value importance

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shaobo Deng, Weili Yuan, Sujie Guan, Xing Lin, Zemin Liao, Min Li
{"title":"A decision tree algorithm based on adaptive entropy of feature value importance","authors":"Shaobo Deng,&nbsp;Weili Yuan,&nbsp;Sujie Guan,&nbsp;Xing Lin,&nbsp;Zemin Liao,&nbsp;Min Li","doi":"10.1016/j.bdr.2025.100530","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing an optimal decision tree remains a challenging task. Existing algorithms often utilize power coefficient methods or standardization techniques to weight the entropy value; however, these approaches do not sufficiently account for the importance of attributes. This paper introduces an Adaptive Entropy Decision Tree (EWDT) algorithm, which leverages eigenvalue importance and integrates singular value decomposition into the calculation of entropy values. Experimental results demonstrate that the proposed algorithm outperforms other decision tree algorithms in terms of accuracy, precision, recall, and F1-score.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"40 ","pages":"Article 100530"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579625000255","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing an optimal decision tree remains a challenging task. Existing algorithms often utilize power coefficient methods or standardization techniques to weight the entropy value; however, these approaches do not sufficiently account for the importance of attributes. This paper introduces an Adaptive Entropy Decision Tree (EWDT) algorithm, which leverages eigenvalue importance and integrates singular value decomposition into the calculation of entropy values. Experimental results demonstrate that the proposed algorithm outperforms other decision tree algorithms in terms of accuracy, precision, recall, and F1-score.
基于特征值重要度自适应熵的决策树算法
构建最优决策树仍然是一项具有挑战性的任务。现有算法多采用功率系数法或标准化技术对熵值进行加权;然而,这些方法并没有充分考虑到属性的重要性。本文介绍了一种自适应熵决策树(EWDT)算法,该算法利用特征值重要度,将奇异值分解集成到熵值计算中。实验结果表明,该算法在准确率、精密度、召回率和f1分数方面都优于其他决策树算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信