Nasir Shezad , Marco D'Agostini , Ali Ezzine , Giorgia Franchin , Paolo Colombo , Zhejian Cao , Farid Akhtar
{"title":"Free-standing 3D-printed monoliths of SrCl2 for ammonia storage as a hydrogen carrier","authors":"Nasir Shezad , Marco D'Agostini , Ali Ezzine , Giorgia Franchin , Paolo Colombo , Zhejian Cao , Farid Akhtar","doi":"10.1016/j.ijhydene.2025.04.432","DOIUrl":null,"url":null,"abstract":"<div><div>The alkaline earth metal halides (AEMHs), such as strontium chloride (SrCl<sub>2</sub>), are promising sorbents for hydrogen storage in the form of ammonia. However, these sorbents suffer from structural disintegration problems due to the extraordinary volume expansion during ammonia sorption. This study reports the fabrication of 3D-printed SrCl<sub>2</sub> monoliths scaffolded with bentonite using the direct ink writing technique. The optimized monolith with a 60 % SrCl<sub>2</sub> loading exhibited an ammonia storage capacity of 488 mg/g, maintaining remarkable structural integrity and effectively accommodating volumetric changes during sorption and desorption over 20 cycles. The kinetics data revealed that ammonia sorption followed a pseudo-second-order model, and intercrystalline diffusion was the rate-controlling step in the 3D-printed SrCl<sub>2</sub> structures. High-pressure sorption isotherms were explained by the dual-site Langmuir-Freundlich model due to surface heterogeneity in terms of energies and binding sites for metal-amine complex formation. Thus, cognitively designed AEMHs monoliths present the potential for ammonia storage in various applications by effectively overcoming structural challenges.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"134 ","pages":"Pages 1-9"},"PeriodicalIF":8.3000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319925021378","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The alkaline earth metal halides (AEMHs), such as strontium chloride (SrCl2), are promising sorbents for hydrogen storage in the form of ammonia. However, these sorbents suffer from structural disintegration problems due to the extraordinary volume expansion during ammonia sorption. This study reports the fabrication of 3D-printed SrCl2 monoliths scaffolded with bentonite using the direct ink writing technique. The optimized monolith with a 60 % SrCl2 loading exhibited an ammonia storage capacity of 488 mg/g, maintaining remarkable structural integrity and effectively accommodating volumetric changes during sorption and desorption over 20 cycles. The kinetics data revealed that ammonia sorption followed a pseudo-second-order model, and intercrystalline diffusion was the rate-controlling step in the 3D-printed SrCl2 structures. High-pressure sorption isotherms were explained by the dual-site Langmuir-Freundlich model due to surface heterogeneity in terms of energies and binding sites for metal-amine complex formation. Thus, cognitively designed AEMHs monoliths present the potential for ammonia storage in various applications by effectively overcoming structural challenges.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.