Study on the mechanical properties of cementitious materials affected by the interactions between crystal and gel products driven by crystallization pressure
IF 7.4 1区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Depeng Zhang , Zhenyu Pi , Hui Li , Mingfeng Xu , Jian Zhou , Guang Ye , Mingzhong Zhang
{"title":"Study on the mechanical properties of cementitious materials affected by the interactions between crystal and gel products driven by crystallization pressure","authors":"Depeng Zhang , Zhenyu Pi , Hui Li , Mingfeng Xu , Jian Zhou , Guang Ye , Mingzhong Zhang","doi":"10.1016/j.conbuildmat.2025.141547","DOIUrl":null,"url":null,"abstract":"<div><div>Existing research on the mechanisms affecting the strength of cementitious materials primarily focuses on the composition and properties of cement hydration products, often overlooking the interactions between different products. This study presents a systematic experimental and theoretical investigation into the mechanical properties of cementitious materials, emphasizing the interactions between crystal and gel products driven by crystallization pressure. A new mechanism based on crystallization pressure is proposed to explain the impact of the interactions between hydration products on the strengths of cementitious materials. Experiments were conducted by immersing specimens in solutions with tailored ion concentrations (including water, isopropyl alcohol, ethanol, and solutions of calcium hydroxide and calcium acetate) to vary the crystallization pressure. The flexural and compressive strengths of these specimens were then tested. An analytical model was developed and validated against the experimental data. Both experimental and calculated results demonstrate a negative correlation between crystallization pressure and strength. Specimens subjected to crystallization pressures of 101.7 MPa and 147.8 MPa showed reductions in flexural strength of 19.34 % and 30.65 %, respectively, and decreases in compressive strength of 10.00 % and 14.41 %, compared to control specimens with zero crystallization pressure. These results suggest that ion concentrations in the pore solution alter the crystallization pressure, which in turn affects the interactions between crystal and gel products and strength of cementitious materials. This study provides insights into the mechanisms of strength degradation due to moisture in porous materials.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"481 ","pages":"Article 141547"},"PeriodicalIF":7.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825016952","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Existing research on the mechanisms affecting the strength of cementitious materials primarily focuses on the composition and properties of cement hydration products, often overlooking the interactions between different products. This study presents a systematic experimental and theoretical investigation into the mechanical properties of cementitious materials, emphasizing the interactions between crystal and gel products driven by crystallization pressure. A new mechanism based on crystallization pressure is proposed to explain the impact of the interactions between hydration products on the strengths of cementitious materials. Experiments were conducted by immersing specimens in solutions with tailored ion concentrations (including water, isopropyl alcohol, ethanol, and solutions of calcium hydroxide and calcium acetate) to vary the crystallization pressure. The flexural and compressive strengths of these specimens were then tested. An analytical model was developed and validated against the experimental data. Both experimental and calculated results demonstrate a negative correlation between crystallization pressure and strength. Specimens subjected to crystallization pressures of 101.7 MPa and 147.8 MPa showed reductions in flexural strength of 19.34 % and 30.65 %, respectively, and decreases in compressive strength of 10.00 % and 14.41 %, compared to control specimens with zero crystallization pressure. These results suggest that ion concentrations in the pore solution alter the crystallization pressure, which in turn affects the interactions between crystal and gel products and strength of cementitious materials. This study provides insights into the mechanisms of strength degradation due to moisture in porous materials.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.