Fatigue performance of hybrid laser arc welded joints with high manganese steel

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Ji-Hoon Kim , Won-Chan Jeong , Insung Choi , Kwang-Hyeon Lee , Myung-Hyun Kim
{"title":"Fatigue performance of hybrid laser arc welded joints with high manganese steel","authors":"Ji-Hoon Kim ,&nbsp;Won-Chan Jeong ,&nbsp;Insung Choi ,&nbsp;Kwang-Hyeon Lee ,&nbsp;Myung-Hyun Kim","doi":"10.1016/j.ijnaoe.2025.100660","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for eco-friendly energy has led to a rise in the use of liquefied natural gas (LNG) ships, necessitating materials with superior mechanical and fatigue performance at cryogenic temperatures. High manganese steel has emerged as a promising alternative to conventional cryogenic steels due to its excellent mechanical properties. However, research on its fatigue performance, particularly in hybrid laser arc welding (HLAW), remains limited. This study evaluates the fatigue performance of HLAW joints in high manganese steel and compares the results with those from other welding processes. Comprehensive fatigue tests, including fatigue crack propagation analysis, were conducted to assess the fatigue resistance of the weldments. The results demonstrate that HLAW weldments exhibit superior fatigue resistance and mechanical properties compared to conventional arc-welded joints. These findings confirm the suitability of HLAW for LNG applications with high manganese steel, offering improved weld quality and increased productivity.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100660"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000184","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for eco-friendly energy has led to a rise in the use of liquefied natural gas (LNG) ships, necessitating materials with superior mechanical and fatigue performance at cryogenic temperatures. High manganese steel has emerged as a promising alternative to conventional cryogenic steels due to its excellent mechanical properties. However, research on its fatigue performance, particularly in hybrid laser arc welding (HLAW), remains limited. This study evaluates the fatigue performance of HLAW joints in high manganese steel and compares the results with those from other welding processes. Comprehensive fatigue tests, including fatigue crack propagation analysis, were conducted to assess the fatigue resistance of the weldments. The results demonstrate that HLAW weldments exhibit superior fatigue resistance and mechanical properties compared to conventional arc-welded joints. These findings confirm the suitability of HLAW for LNG applications with high manganese steel, offering improved weld quality and increased productivity.
高锰钢混合激光弧焊接头的疲劳性能
对环保能源的需求日益增长,导致液化天然气(LNG)船舶的使用增加,这就需要在低温下具有优异机械和疲劳性能的材料。高锰钢由于其优异的机械性能,已成为传统深冷钢的一个有前途的替代品。然而,对其疲劳性能的研究,特别是在混合激光弧焊(HLAW)中的研究仍然有限。本研究评估了高锰钢HLAW接头的疲劳性能,并与其他焊接工艺的结果进行了比较。进行了综合疲劳试验,包括疲劳裂纹扩展分析,以评估焊接件的抗疲劳性能。结果表明,与传统弧焊接头相比,HLAW焊件具有更好的抗疲劳性能和力学性能。这些发现证实了HLAW适用于高锰钢的LNG应用,改善了焊接质量,提高了生产率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信