Partitioning vertices of graphs into paths of the same length

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Oleg Duginov , Dmitriy Malyshev , Dmitriy Mokeev
{"title":"Partitioning vertices of graphs into paths of the same length","authors":"Oleg Duginov ,&nbsp;Dmitriy Malyshev ,&nbsp;Dmitriy Mokeev","doi":"10.1016/j.dam.2025.04.054","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph, the (<em>induced</em>) <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><em>-partition problem</em> is to decide whether its vertex set can be partitioned into subsets, each of which induces (the <span><math><mi>k</mi></math></span>-path) a <span><math><mi>k</mi></math></span>-vertex subgraph with a Hamiltonian path. We show that these problems are NP-complete for planar subcubic bipartite <span><math><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></mrow></math></span>-free graphs of girth <span><math><mi>g</mi></math></span>, for any <span><math><mrow><mi>k</mi><mo>,</mo><mi>g</mi><mo>≥</mo><mn>3</mn><mo>,</mo><mi>l</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, where <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is obtained by joining central vertices in two copies of <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> with <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span>. We show that the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-partition (induced <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-partition) problem is NP-complete for split graphs and any <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, chordal graphs and any <span><math><mrow><mi>k</mi><mo>≥</mo><mn>4</mn></mrow></math></span> (any <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>), line graphs of planar bipartite graphs and any <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span> (any <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span>). We show that the <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-partition and, for any <span><math><mrow><mi>k</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, induced <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-partition problems, restricted to split graphs, are polynomial. Additionally, we prove NP-completeness for the optimization version of the induced <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-partition problem and split graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 179-195"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500229X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given a graph, the (induced) Pk-partition problem is to decide whether its vertex set can be partitioned into subsets, each of which induces (the k-path) a k-vertex subgraph with a Hamiltonian path. We show that these problems are NP-complete for planar subcubic bipartite (H1,H2,,H)-free graphs of girth g, for any k,g3,l1, where Hi is obtained by joining central vertices in two copies of P3 with Pi+1. We show that the Pk-partition (induced Pk-partition) problem is NP-complete for split graphs and any k5, chordal graphs and any k4 (any k3), line graphs of planar bipartite graphs and any k5 (any k3). We show that the P4-partition and, for any k5, induced Pk-partition problems, restricted to split graphs, are polynomial. Additionally, we prove NP-completeness for the optimization version of the induced P4-partition problem and split graphs.
将图的顶点划分为相同长度的路径
给定一个图,(诱导)pk划分问题是决定其顶点集是否可以划分为子集,每个子集(k-路径)诱导出一个具有哈密顿路径的k-顶点子图。我们证明了这些问题对于周长为g的平面次三次二部(H1,H2,…,H)自由图是np完全的,对于任意k,g≥3,l≥1,其中Hi是通过将两个复制的P3的中心顶点与Pi+1连接而得到的。我们证明了分割图和任意k≥5、弦图和任意k≥4(任意k≥3)、平面二部图的线形图和任意k≥5(任意k≥3)的pk -划分(诱导pk -划分)问题是np完全的。我们证明了对于任何k≥5的p4划分问题和对分裂图的诱导的pk划分问题都是多项式的。此外,我们证明了p4划分问题和分裂图的优化版本的np -完备性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信