Exploring species taxonomic kingdom using information entropy and nucleotide compositional features of coding sequences based on machine learning methods
Sebu Aboma Temesgen , Basharat Ahmad , Bakanina Kissanga Grace-Mercure , Minghao Liu , Li Liu , Hao Lin , Kejun Deng
{"title":"Exploring species taxonomic kingdom using information entropy and nucleotide compositional features of coding sequences based on machine learning methods","authors":"Sebu Aboma Temesgen , Basharat Ahmad , Bakanina Kissanga Grace-Mercure , Minghao Liu , Li Liu , Hao Lin , Kejun Deng","doi":"10.1016/j.ymeth.2025.03.023","DOIUrl":null,"url":null,"abstract":"<div><div>The flow of genetic information from DNA to protein is governed by the central dogma of molecular biology. Genetic drift and mutations usually lead to changes in DNA composition, thereby affecting the coding sequences (CDS) that encode functional proteins. Analyzing the nucleotide distribution in the coding regions of species is crucial for understanding their evolution. In this study, we applied Markov processes to analyze codon formation in 37,031,061 CDSs across 3,735 species genomes, spanning viruses, archaea, bacteria, and eukaryotes, to explore compositional changes. Our results revealed species preferences for different nucleotides. Information entropies and Markov information densities show that eukaryotes exhibit higher redundancy, followed by viruses, suggesting more gene duplication in eukaryotes and high mutation rates in viruses. Evolutionary trends showed an increase in information entropy and a decrease in Markov entropy, with negative correlations between first- and second-order Markov information densities. Furthermore, uniform manifold approximation and projection (UMAP) was used to reduce information redundancy for revealing unique evolutionary patterns in species classification. The machine learning methods demonstrated excellent performance in species classification accuracy, providing profound insights into CDS evolution and protein synthesis.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"240 ","pages":"Pages 165-179"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325001069","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The flow of genetic information from DNA to protein is governed by the central dogma of molecular biology. Genetic drift and mutations usually lead to changes in DNA composition, thereby affecting the coding sequences (CDS) that encode functional proteins. Analyzing the nucleotide distribution in the coding regions of species is crucial for understanding their evolution. In this study, we applied Markov processes to analyze codon formation in 37,031,061 CDSs across 3,735 species genomes, spanning viruses, archaea, bacteria, and eukaryotes, to explore compositional changes. Our results revealed species preferences for different nucleotides. Information entropies and Markov information densities show that eukaryotes exhibit higher redundancy, followed by viruses, suggesting more gene duplication in eukaryotes and high mutation rates in viruses. Evolutionary trends showed an increase in information entropy and a decrease in Markov entropy, with negative correlations between first- and second-order Markov information densities. Furthermore, uniform manifold approximation and projection (UMAP) was used to reduce information redundancy for revealing unique evolutionary patterns in species classification. The machine learning methods demonstrated excellent performance in species classification accuracy, providing profound insights into CDS evolution and protein synthesis.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.