Quantum annealing with chaotic driver Hamiltonians

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Henning Schlömer , Subir Sachdev
{"title":"Quantum annealing with chaotic driver Hamiltonians","authors":"Henning Schlömer ,&nbsp;Subir Sachdev","doi":"10.1016/j.aop.2025.170042","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum annealing is a computational approach designed to leverage quantum fluctuations for solving large-scale classical optimization problems. Although incorporating standard transverse field (TF) terms in the annealing process can help navigate sharp minima, the potential for achieving a scalable quantum advantage for general optimization problems remains uncertain. Here, we examine the effectiveness of including chaotic quantum driver Hamiltonians in the annealing dynamics. Specifically, we investigate driver Hamiltonians based on a bosonic spin version of the Sachdev-Ye-Kitaev (SYK) model, which features a high degree of non-locality and non-commutativity. Focusing on MaxCut instances on regular graphs, we find that a considerable proportion of SYK model instances demonstrate significant speedups, especially for challenging graph configurations. Additionally, our analysis of time-to-solution scalings for the low autocorrelation binary sequence (LABS) problem suggests that SYK-type fluctuations can outperform traditional transverse field annealing schedules in large-scale optimization tasks.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"479 ","pages":"Article 170042"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000349162500123X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum annealing is a computational approach designed to leverage quantum fluctuations for solving large-scale classical optimization problems. Although incorporating standard transverse field (TF) terms in the annealing process can help navigate sharp minima, the potential for achieving a scalable quantum advantage for general optimization problems remains uncertain. Here, we examine the effectiveness of including chaotic quantum driver Hamiltonians in the annealing dynamics. Specifically, we investigate driver Hamiltonians based on a bosonic spin version of the Sachdev-Ye-Kitaev (SYK) model, which features a high degree of non-locality and non-commutativity. Focusing on MaxCut instances on regular graphs, we find that a considerable proportion of SYK model instances demonstrate significant speedups, especially for challenging graph configurations. Additionally, our analysis of time-to-solution scalings for the low autocorrelation binary sequence (LABS) problem suggests that SYK-type fluctuations can outperform traditional transverse field annealing schedules in large-scale optimization tasks.
混沌驱动哈密顿量的量子退火
量子退火是一种计算方法,旨在利用量子涨落来解决大规模经典优化问题。虽然在退火过程中加入标准横向场(TF)项可以帮助导航锐极小值,但对于一般优化问题实现可扩展量子优势的潜力仍然不确定。在这里,我们检验了在退火动力学中加入混沌量子驱动哈密顿量的有效性。具体来说,我们研究了基于Sachdev-Ye-Kitaev (SYK)模型的玻色子自旋版本的驱动汉密尔顿子,该模型具有高度的非局域性和非交换性。专注于常规图上的MaxCut实例,我们发现相当大比例的SYK模型实例显示出显著的加速,特别是对于具有挑战性的图配置。此外,我们对低自相关二值序列(LABS)问题的求解时间尺度分析表明,syk型波动在大规模优化任务中优于传统的横向场退火计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信