Yong Liu , Jun Wang , Kun Wang , Wen Yang , Yanni Zhu
{"title":"Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph","authors":"Yong Liu , Jun Wang , Kun Wang , Wen Yang , Yanni Zhu","doi":"10.1016/j.jde.2025.113360","DOIUrl":null,"url":null,"abstract":"<div><div>The focus of our paper is to investigate the possibility of a minimizer for the Thomas-Fermi-Dirac-von Weizsäcker model on the lattice graph <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The model is described by the following functional:<span><span><span><math><mi>E</mi><mo>(</mo><mi>φ</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>−</mo><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mo>+</mo><munder><mo>∑</mo><mrow><mfrac><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mspace></mspace><mspace></mspace><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></mfrac></mrow></munder><mfrac><mrow><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>,</mo></math></span></span></span> with the additional constraint that <span><math><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>m</mi></math></span>. We begin by establishing the existence of a minimizer for this model when <em>m</em> is sufficiently small. Conversely, we demonstrate that no minimizer exists when <em>m</em> exceeds a certain threshold. Additionally, we extend our analysis to a subset <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and prove the nonexistence of a minimizer for the following functional:<span><span><span><math><mi>E</mi><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>=</mo><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo><mo>+</mo><munder><mo>∑</mo><mrow><mfrac><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>Ω</mi></mrow><mrow><mspace></mspace><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></mfrac></mrow></munder><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>,</mo></math></span></span></span> under the constraint that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mi>V</mi></math></span> is sufficiently large.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113360"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003870","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of our paper is to investigate the possibility of a minimizer for the Thomas-Fermi-Dirac-von Weizsäcker model on the lattice graph . The model is described by the following functional: with the additional constraint that . We begin by establishing the existence of a minimizer for this model when m is sufficiently small. Conversely, we demonstrate that no minimizer exists when m exceeds a certain threshold. Additionally, we extend our analysis to a subset and prove the nonexistence of a minimizer for the following functional: under the constraint that is sufficiently large.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics