Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph

IF 2.4 2区 数学 Q1 MATHEMATICS
Yong Liu , Jun Wang , Kun Wang , Wen Yang , Yanni Zhu
{"title":"Existence and nonexistence of minimizer for Thomas-Fermi-Dirac-von Weizsäcker model on lattice graph","authors":"Yong Liu ,&nbsp;Jun Wang ,&nbsp;Kun Wang ,&nbsp;Wen Yang ,&nbsp;Yanni Zhu","doi":"10.1016/j.jde.2025.113360","DOIUrl":null,"url":null,"abstract":"<div><div>The focus of our paper is to investigate the possibility of a minimizer for the Thomas-Fermi-Dirac-von Weizsäcker model on the lattice graph <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. The model is described by the following functional:<span><span><span><math><mi>E</mi><mo>(</mo><mi>φ</mi><mo>)</mo><mo>=</mo><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><mrow><mo>(</mo><mo>|</mo><mi>∇</mi><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>10</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>−</mo><msup><mrow><mo>(</mo><mi>φ</mi><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mfrac><mrow><mn>8</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></msup><mo>)</mo></mrow><mo>+</mo><munder><mo>∑</mo><mrow><mfrac><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow><mrow><mspace></mspace><mspace></mspace><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></mfrac></mrow></munder><mfrac><mrow><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>,</mo></math></span></span></span> with the additional constraint that <span><math><munder><mo>∑</mo><mrow><mi>y</mi><mo>∈</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></munder><msup><mrow><mi>φ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>y</mi><mo>)</mo><mo>=</mo><mi>m</mi></math></span>. We begin by establishing the existence of a minimizer for this model when <em>m</em> is sufficiently small. Conversely, we demonstrate that no minimizer exists when <em>m</em> exceeds a certain threshold. Additionally, we extend our analysis to a subset <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> and prove the nonexistence of a minimizer for the following functional:<span><span><span><math><mi>E</mi><mo>(</mo><mi>Ω</mi><mo>)</mo><mo>=</mo><mo>|</mo><mo>∂</mo><mi>Ω</mi><mo>|</mo><mo>+</mo><munder><mo>∑</mo><mrow><mfrac><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>∈</mo><mi>Ω</mi></mrow><mrow><mspace></mspace><mi>y</mi><mo>≠</mo><mi>x</mi></mrow></mfrac></mrow></munder><mfrac><mrow><mn>1</mn></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo></mrow></mfrac><mo>,</mo></math></span></span></span> under the constraint that <span><math><mo>|</mo><mi>Ω</mi><mo>|</mo><mo>=</mo><mi>V</mi></math></span> is sufficiently large.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113360"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625003870","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of our paper is to investigate the possibility of a minimizer for the Thomas-Fermi-Dirac-von Weizsäcker model on the lattice graph Z3. The model is described by the following functional:E(φ)=yZ3(|φ(y)|2+(φ(y))103(φ(y))83)+x,yZ3yxφ2(x)φ2(y)|xy|, with the additional constraint that yZ3φ2(y)=m. We begin by establishing the existence of a minimizer for this model when m is sufficiently small. Conversely, we demonstrate that no minimizer exists when m exceeds a certain threshold. Additionally, we extend our analysis to a subset ΩZ3 and prove the nonexistence of a minimizer for the following functional:E(Ω)=|Ω|+x,yΩyx1|xy|, under the constraint that |Ω|=V is sufficiently large.
格图上Thomas-Fermi-Dirac-von Weizsäcker模型极小器的存在性与不存在性
本文的重点是研究格图Z3上Thomas-Fermi-Dirac-von Weizsäcker模型的极小化的可能性。模型由以下泛函描述:E(φ)=∑y∈Z3(|∇φ(y)|2+(φ(y))103−(φ(y))83)+∑x,y∈Z3y≠xφ2(x)φ2(y)|x−y|,附加约束∑y∈Z3φ2(y)=m。当m足够小时,我们首先建立这个模型的最小值存在性。相反,我们证明当m超过某个阈值时,不存在最小化器。此外,我们将分析扩展到一个子集Ω∧Z3,并证明以下泛函E(Ω)=|∂Ω|+∑x,y∈Ωy≠x1|x−y|,在|Ω|=V足够大的约束下不存在最小化器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信