Heat kernel estimates and their stabilities for symmetric jump processes with general mixed polynomial growths on metric measure spaces

IF 2.4 2区 数学 Q1 MATHEMATICS
Joohak Bae , Jaehoon Kang , Panki Kim , Jaehun Lee
{"title":"Heat kernel estimates and their stabilities for symmetric jump processes with general mixed polynomial growths on metric measure spaces","authors":"Joohak Bae ,&nbsp;Jaehoon Kang ,&nbsp;Panki Kim ,&nbsp;Jaehun Lee","doi":"10.1016/j.jde.2025.113377","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a symmetric pure jump Markov process <em>X</em> on a metric measure space with volume doubling conditions. Our focus is on estimating the transition density <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> of <em>X</em> and studying its stability when the jumping kernel exhibits general mixed polynomial growth.</div><div>Unlike previous work, in our setting, the rate function governing the jump growth may not be comparable to the scale function that determines whether <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> has near-diagonal or off-diagonal estimates. Under the assumption that lower scaling index of scale function is greater than 1, we establish stabilities of heat kernel estimates. Additionally, if the metric measure space admits a conservative diffusion process with a transition density satisfying sub-Gaussian bounds, we generalize heat kernel estimates from <span><span>[3, Theorems 1.2 and 1.4]</span></span> using the rate function and the function <em>F</em> related to walk dimension of underlying space. As an application, we prove the equivalence between a finite moment condition based on <em>F</em> and a generalized Khintchine-type law of iterated logarithm at infinity for symmetric Markov processes.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"438 ","pages":"Article 113377"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004048","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a symmetric pure jump Markov process X on a metric measure space with volume doubling conditions. Our focus is on estimating the transition density p(t,x,y) of X and studying its stability when the jumping kernel exhibits general mixed polynomial growth.
Unlike previous work, in our setting, the rate function governing the jump growth may not be comparable to the scale function that determines whether p(t,x,y) has near-diagonal or off-diagonal estimates. Under the assumption that lower scaling index of scale function is greater than 1, we establish stabilities of heat kernel estimates. Additionally, if the metric measure space admits a conservative diffusion process with a transition density satisfying sub-Gaussian bounds, we generalize heat kernel estimates from [3, Theorems 1.2 and 1.4] using the rate function and the function F related to walk dimension of underlying space. As an application, we prove the equivalence between a finite moment condition based on F and a generalized Khintchine-type law of iterated logarithm at infinity for symmetric Markov processes.
度量度量空间上具有一般混合多项式增长的对称跳跃过程的热核估计及其稳定性
本文考虑了具有体积加倍条件的度量度量空间上的对称纯跳跃马尔可夫过程X。我们的重点是估计x的跃迁密度p(t,x,y),并研究它在跳跃核呈现一般混合多项式增长时的稳定性。与以前的工作不同,在我们的设置中,控制跳跃增长的速率函数可能无法与确定p(t,x,y)是否具有近对角线或非对角线估计的尺度函数相比较。在尺度函数的下标度指数大于1的假设下,建立了热核估计的稳定性。此外,如果度量度量空间允许一个转移密度满足亚高斯边界的保守扩散过程,我们使用速率函数和与底层空间行走维数相关的函数F推广[3,定理1.2和1.4]中的热核估计。作为应用,我们证明了基于F的有限矩条件与对称马尔可夫过程无穷远处的广义khintchine型迭代对数定律的等价性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信