Xin Wang , Chenjun Liu , Mingyue Wang , Bohao Yin , Yuwei Ge , Linyuan Shu , Hui Sun , Wei Zhang
{"title":"Multi-modal microcarriers reprogram mitochondrial metabolism and activate efferocytosis in macrophages for osteoporotic bone repair","authors":"Xin Wang , Chenjun Liu , Mingyue Wang , Bohao Yin , Yuwei Ge , Linyuan Shu , Hui Sun , Wei Zhang","doi":"10.1016/j.biomaterials.2025.123384","DOIUrl":null,"url":null,"abstract":"<div><div>Osteoporotic bone repair remains challenging due to the ineffectiveness of traditional bone repair materials in adapting to the complex immune microenvironment of aging bone tissue. Exploiting the key role of macrophages in regulating this immune environment through the rational design of osteoimmunomodulatory biomaterials has emerged as a promising approach. However, current designs inadequately address the complexity of macrophage functions in aging environments, resulting in suboptimal regulatory effects. Hence, we explored multi-modal microcarriers for enhancing macrophage functionality. In this work, we developed a VGX-1027-loaded mesoporous silica nanosphere composite PLLA microcarrier. The dual-carrier system, featuring a micro-nano hybrid design by spatially separating the mesoporous silica nanoparticles and PLLA microspheres, enables sustained intracellular release of VGX-1027, addressing the chronic nature of osteoporotic fractures. Our studies demonstrate this VGX-1027 microcarrier (PMVGX) promotes M2 macrophage polarization by reprogramming mitochondrial metabolism. Simultaneously, it enhances efferocytosis, facilitating the clearance of dead or senescent cells and reducing inflammatory responses, thus reshaping the aging osteoimmunomodulatory. Furthermore, PMVGX induces macrophages to release osteogenic exosomes containing miR-5106 through paracrine signaling, significantly enhancing osteogenic function. In a postmenopausal osteoporosis animal model, PMVGX exhibited remarkable efficacy in repairing osteoporotic bone defects. This proof-of-concept study demonstrates that our multi-modal microcarrier effectively regulates macrophage functions via mitochondrial homeostasis, efferocytosis, and exosome content, offering great potential for osteoporotic bone repair.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"322 ","pages":"Article 123384"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225003035","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporotic bone repair remains challenging due to the ineffectiveness of traditional bone repair materials in adapting to the complex immune microenvironment of aging bone tissue. Exploiting the key role of macrophages in regulating this immune environment through the rational design of osteoimmunomodulatory biomaterials has emerged as a promising approach. However, current designs inadequately address the complexity of macrophage functions in aging environments, resulting in suboptimal regulatory effects. Hence, we explored multi-modal microcarriers for enhancing macrophage functionality. In this work, we developed a VGX-1027-loaded mesoporous silica nanosphere composite PLLA microcarrier. The dual-carrier system, featuring a micro-nano hybrid design by spatially separating the mesoporous silica nanoparticles and PLLA microspheres, enables sustained intracellular release of VGX-1027, addressing the chronic nature of osteoporotic fractures. Our studies demonstrate this VGX-1027 microcarrier (PMVGX) promotes M2 macrophage polarization by reprogramming mitochondrial metabolism. Simultaneously, it enhances efferocytosis, facilitating the clearance of dead or senescent cells and reducing inflammatory responses, thus reshaping the aging osteoimmunomodulatory. Furthermore, PMVGX induces macrophages to release osteogenic exosomes containing miR-5106 through paracrine signaling, significantly enhancing osteogenic function. In a postmenopausal osteoporosis animal model, PMVGX exhibited remarkable efficacy in repairing osteoporotic bone defects. This proof-of-concept study demonstrates that our multi-modal microcarrier effectively regulates macrophage functions via mitochondrial homeostasis, efferocytosis, and exosome content, offering great potential for osteoporotic bone repair.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.