Weilun Deng , Shengwei Wang , Tianyi Zhang , Jianlei Zhang , Qijie Zhai , Changsheng Zhai , Hongxing Zheng
{"title":"Oxidation and failure mechanisms of CoCrFeNiMo HEA coatings at 1000 °C: Insights into TGO evolution and interface diffusion","authors":"Weilun Deng , Shengwei Wang , Tianyi Zhang , Jianlei Zhang , Qijie Zhai , Changsheng Zhai , Hongxing Zheng","doi":"10.1016/j.surfcoat.2025.132229","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the oxidation behavior and failure mechanisms of CoCrFeNiMo high-entropy alloy (HEA) coatings fabricated <em>via</em> high-velocity oxygen fuel (HVOF) spraying and high-frequency induction remelting. At 1000 °C, the thermally grown oxide (TGO) developed a dual-layer structure: a dense Cr<sub>2</sub>O<sub>3</sub> inner layer, formed by Cr<sup>3+</sup> and O<sup>2−</sup> diffusion, and an outer layer of Cr-, Fe-, and Mo-rich composite oxides driven by oxygen ion diffusion. After 5 h of exposure, the TGO reached 30 μm with initial crack formation, while after 200 h, it exceeded 50 μm, showing severe outer-layer degradation due to internal stress, crack propagation, and void formation. Fe/Mo interdiffusion at the coating-steel substrate interface promoted Fe<sub>63</sub>Mo<sub>37</sub> R-phase formation. Electron backscatter diffraction (EBSD) analysis revealed refined grains, twinning, and recrystallization within the coating, enhancing high-temperature stability. These findings offer insights into the oxidation and failure mechanisms of CoCrFeNiMo HEA coatings, supporting their optimization for extreme high-temperature applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"509 ","pages":"Article 132229"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225005031","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the oxidation behavior and failure mechanisms of CoCrFeNiMo high-entropy alloy (HEA) coatings fabricated via high-velocity oxygen fuel (HVOF) spraying and high-frequency induction remelting. At 1000 °C, the thermally grown oxide (TGO) developed a dual-layer structure: a dense Cr2O3 inner layer, formed by Cr3+ and O2− diffusion, and an outer layer of Cr-, Fe-, and Mo-rich composite oxides driven by oxygen ion diffusion. After 5 h of exposure, the TGO reached 30 μm with initial crack formation, while after 200 h, it exceeded 50 μm, showing severe outer-layer degradation due to internal stress, crack propagation, and void formation. Fe/Mo interdiffusion at the coating-steel substrate interface promoted Fe63Mo37 R-phase formation. Electron backscatter diffraction (EBSD) analysis revealed refined grains, twinning, and recrystallization within the coating, enhancing high-temperature stability. These findings offer insights into the oxidation and failure mechanisms of CoCrFeNiMo HEA coatings, supporting their optimization for extreme high-temperature applications.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.