Fangzhou Lin , Shang Gao , Yichuan Tang , Xihan Ma , Ryo Murakami , Ziming Zhang , John D. Obayemi , Winston O. Soboyejo , Haichong K. Zhang
{"title":"Spectroscopic photoacoustic denoising framework using hybrid analytical and data-free learning method","authors":"Fangzhou Lin , Shang Gao , Yichuan Tang , Xihan Ma , Ryo Murakami , Ziming Zhang , John D. Obayemi , Winston O. Soboyejo , Haichong K. Zhang","doi":"10.1016/j.pacs.2025.100729","DOIUrl":null,"url":null,"abstract":"<div><div>Spectroscopic photoacoustic (sPA) imaging uses multiple wavelengths to differentiate and quantify chromophores based on their unique optical absorption spectra. This technique has been widely applied in areas such as vascular mapping, tumor detection, and therapeutic monitoring. However, PA imaging is highly susceptible to noise, leading to a low signal-to-noise ratio (SNR) and compromised image quality. Furthermore, low SNR in spectral data adversely affects spectral unmixing outcomes, hindering accurate quantitative PA imaging. Traditional denoising techniques like frame averaging, though effective in improving SNR, can be impractical for dynamic imaging scenarios due to reduced frame rates. Advanced methods, including learning-based approaches and analytical algorithms, have demonstrated promise but often require extensive training data and parameter tuning. Moreover, spectral information preservation is unclear, limiting their adaptability for clinical usage. Additionally, training data is not always accessible for learning-based methods. In this work, we propose a <u>S</u>pectroscopic <u>P</u>hoto<u>a</u>coustic <u>De</u>noising (SPADE) framework using hybrid analytical and data-free learning method. This framework integrates a data-free learning-based method with an efficient BM3D-based analytical approach while preserving spectral integrity, providing noise reduction, and ensuring that functional information is maintained. The SPADE framework was validated through simulation, phantom, in vivo, and ex vivo studies. These studies demonstrated that SPADE improved image SNR by over 15 <span><math><mi>dB</mi></math></span> in high noise cases and preserved spectral information (R > 0.8), outperforming conventional methods, especially in low SNR conditions. SPADE presents a promising solution for preserving the accuracy of quantitative PA imaging in clinical applications where noise reduction and spectral preservation are critical.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"44 ","pages":"Article 100729"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000527","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spectroscopic photoacoustic (sPA) imaging uses multiple wavelengths to differentiate and quantify chromophores based on their unique optical absorption spectra. This technique has been widely applied in areas such as vascular mapping, tumor detection, and therapeutic monitoring. However, PA imaging is highly susceptible to noise, leading to a low signal-to-noise ratio (SNR) and compromised image quality. Furthermore, low SNR in spectral data adversely affects spectral unmixing outcomes, hindering accurate quantitative PA imaging. Traditional denoising techniques like frame averaging, though effective in improving SNR, can be impractical for dynamic imaging scenarios due to reduced frame rates. Advanced methods, including learning-based approaches and analytical algorithms, have demonstrated promise but often require extensive training data and parameter tuning. Moreover, spectral information preservation is unclear, limiting their adaptability for clinical usage. Additionally, training data is not always accessible for learning-based methods. In this work, we propose a Spectroscopic Photoacoustic Denoising (SPADE) framework using hybrid analytical and data-free learning method. This framework integrates a data-free learning-based method with an efficient BM3D-based analytical approach while preserving spectral integrity, providing noise reduction, and ensuring that functional information is maintained. The SPADE framework was validated through simulation, phantom, in vivo, and ex vivo studies. These studies demonstrated that SPADE improved image SNR by over 15 in high noise cases and preserved spectral information (R > 0.8), outperforming conventional methods, especially in low SNR conditions. SPADE presents a promising solution for preserving the accuracy of quantitative PA imaging in clinical applications where noise reduction and spectral preservation are critical.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.