{"title":"On the Δ-edge stability number of graphs","authors":"Saieed Akbari , Reza Hosseini Dolatabadi , Mohsen Jamaali , Sandi Klavžar , Nazanin Movarraei","doi":"10.1016/j.ejc.2025.104167","DOIUrl":null,"url":null,"abstract":"<div><div>The <span><math><mi>Δ</mi></math></span>-edge stability number <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is the minimum number of edges of <span><math><mi>G</mi></math></span> whose removal results in a subgraph <span><math><mi>H</mi></math></span> with <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>H</mi><mo>)</mo></mrow><mo>=</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>. Sets whose removal results in a subgraph with smaller maximum degree are called mitigating sets. It is proved that there always exists a mitigating set which induces a disjoint union of paths of order 2 or 3. Minimum mitigating sets which induce matchings are characterized. It is proved that to obtain an upper bound of the form <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>c</mi><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow></mrow></math></span> for an arbitrary graph <span><math><mi>G</mi></math></span> of given maximum degree <span><math><mi>Δ</mi></math></span>, where <span><math><mi>c</mi></math></span> is a given constant, it suffices to prove the bound for <span><math><mi>Δ</mi></math></span>-regular graphs. Sharp upper bounds of this form are derived for regular graphs. It is proved that if <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mfrac><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac></mrow></math></span> or the induced subgraph on maximum degree vertices has a <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>-edge coloring, then <span><math><mrow><msub><mrow><mi>es</mi></mrow><mrow><mi>Δ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌈</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>/</mo><mn>2</mn><mo>⌉</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"127 ","pages":"Article 104167"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000502","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The -edge stability number of a graph is the minimum number of edges of whose removal results in a subgraph with . Sets whose removal results in a subgraph with smaller maximum degree are called mitigating sets. It is proved that there always exists a mitigating set which induces a disjoint union of paths of order 2 or 3. Minimum mitigating sets which induce matchings are characterized. It is proved that to obtain an upper bound of the form for an arbitrary graph of given maximum degree , where is a given constant, it suffices to prove the bound for -regular graphs. Sharp upper bounds of this form are derived for regular graphs. It is proved that if or the induced subgraph on maximum degree vertices has a -edge coloring, then .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.