Shuang Lou , Huijie Chen , Mingyue Li , Shize Wang , Yuting Dong , Xinrui Deng , Shu Li
{"title":"Nano-selenium alleviates tetrabromobisphenol A induced PANoptosis in carp gill tissue by inhibiting TLR4/MyD88/NF-κB pathway","authors":"Shuang Lou , Huijie Chen , Mingyue Li , Shize Wang , Yuting Dong , Xinrui Deng , Shu Li","doi":"10.1016/j.fsi.2025.110374","DOIUrl":null,"url":null,"abstract":"<div><div>Tetrabromobisphenol A (TBBPA) is a common environmental pollutant with a molar mass of 543.91 g/mol. Nano-selenium (Nano-Se) has strong antioxidant capacity. Therefore in this study, we investigated the effects of TBBPA and Nano-Se on carp gills and EPC cells. The results showed that TBBPA exposure reduced the activities of CAT and T-AOC, increased the contents of MDA and H<sub>2</sub>O<sub>2</sub>, and increased the expression levels of mRNA and protein related to TLR4, MyD88, and NF-κB pathways. ASC, Caspase1, RIPK1, RIPK3, and NLRP3 related mRNA and protein expression levels of PANoptosome increased, while Caspase8 expression decreased. The expression of PANoptosis-related indicators GSDMD, MLKL Caspase3, Caspase9, Bax, IL-18, and IL-1β increased, while the expression of Bcl-2 decreased. Nano-Se mitigated the above outcome changes caused by TBBPA. In vitro, experiments further verified that Nano-Se could alleviate the PANoptosis of EPC cells induced by TBBPA. The addition of NF-κB activator 1 can reverse the therapeutic effect of Nano-Se on TBBPA. In summary, Nano-Se can alleviate oxidative stress, inhibit the TLR4/MyD88/NF-κB pathway, and reduce TBBPA-induced PANoptosis in fish gill tissue.</div></div>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":"163 ","pages":"Article 110374"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050464825002633","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Tetrabromobisphenol A (TBBPA) is a common environmental pollutant with a molar mass of 543.91 g/mol. Nano-selenium (Nano-Se) has strong antioxidant capacity. Therefore in this study, we investigated the effects of TBBPA and Nano-Se on carp gills and EPC cells. The results showed that TBBPA exposure reduced the activities of CAT and T-AOC, increased the contents of MDA and H2O2, and increased the expression levels of mRNA and protein related to TLR4, MyD88, and NF-κB pathways. ASC, Caspase1, RIPK1, RIPK3, and NLRP3 related mRNA and protein expression levels of PANoptosome increased, while Caspase8 expression decreased. The expression of PANoptosis-related indicators GSDMD, MLKL Caspase3, Caspase9, Bax, IL-18, and IL-1β increased, while the expression of Bcl-2 decreased. Nano-Se mitigated the above outcome changes caused by TBBPA. In vitro, experiments further verified that Nano-Se could alleviate the PANoptosis of EPC cells induced by TBBPA. The addition of NF-κB activator 1 can reverse the therapeutic effect of Nano-Se on TBBPA. In summary, Nano-Se can alleviate oxidative stress, inhibit the TLR4/MyD88/NF-κB pathway, and reduce TBBPA-induced PANoptosis in fish gill tissue.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.