Wanying Huang;Chunxi Zhang;Lailiang Song;Wei Zhang;Zhifang Zhu;Longjun Ran
{"title":"The Digital-Twin Modeling Method and Cross-Coupling Mechanism of Quartz Flexible Accelerometer","authors":"Wanying Huang;Chunxi Zhang;Lailiang Song;Wei Zhang;Zhifang Zhu;Longjun Ran","doi":"10.1109/JSEN.2025.3550722","DOIUrl":null,"url":null,"abstract":"Quartz flexible accelerometers (QFAs) are widely applied in navigation systems. Although mechanical excitation is known to degrade the QFA performance and lower the positioning accuracy of the system, the mechanism underlying the dynamic performance deterioration remains obscure. Considering the etching process and assembly deviation, this article theoretically derives a pendulum cross-coupling mechanism and quantifies the transfer process of the structural error in the beams. The physical process of QFA is represented by a motion model, electrostatic and electromagnetic field models, and a signal transmission model. The QFA was analyzed through a digital-twin modeling approach incorporating finite element modeling and numerical analysis. The digital-twin model verified the error-transfer process of the beam structure and vibration experiments confirmed the specific effects of cross coupling. This article quantifies the dynamic accuracy degradation caused by interior errors in the QFA, providing guidance for optimizing the structure and assembly process of QFAs and promoting their environmental adaptability.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"14799-14809"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10977759/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quartz flexible accelerometers (QFAs) are widely applied in navigation systems. Although mechanical excitation is known to degrade the QFA performance and lower the positioning accuracy of the system, the mechanism underlying the dynamic performance deterioration remains obscure. Considering the etching process and assembly deviation, this article theoretically derives a pendulum cross-coupling mechanism and quantifies the transfer process of the structural error in the beams. The physical process of QFA is represented by a motion model, electrostatic and electromagnetic field models, and a signal transmission model. The QFA was analyzed through a digital-twin modeling approach incorporating finite element modeling and numerical analysis. The digital-twin model verified the error-transfer process of the beam structure and vibration experiments confirmed the specific effects of cross coupling. This article quantifies the dynamic accuracy degradation caused by interior errors in the QFA, providing guidance for optimizing the structure and assembly process of QFAs and promoting their environmental adaptability.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice