Quantum caloric effects

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Clebson Cruz, João S Amaral, Mario Reis
{"title":"Quantum caloric effects","authors":"Clebson Cruz, João S Amaral, Mario Reis","doi":"10.1088/2058-9565/adcf47","DOIUrl":null,"url":null,"abstract":"Quantum thermodynamics aims to explore quantum features to enhance energy conversion beyond classical limits. While significant progress has been made, the understanding of caloric potentials in quantum systems remains incomplete. In this context, this study focuses on deriving general expressions for these caloric potentials, by developing a quantum Maxwell relationship obtained from a thermal average form of the Ehrenfest theorem. Our results recover the classical cases and also reveal that the isothermal entropy change can be related to genuine quantum correlations in the system. Thus, this work aims to contribute to the understanding of the caloric behavior of quantum systems and their potential implication in caloric devices.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"49 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/adcf47","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum thermodynamics aims to explore quantum features to enhance energy conversion beyond classical limits. While significant progress has been made, the understanding of caloric potentials in quantum systems remains incomplete. In this context, this study focuses on deriving general expressions for these caloric potentials, by developing a quantum Maxwell relationship obtained from a thermal average form of the Ehrenfest theorem. Our results recover the classical cases and also reveal that the isothermal entropy change can be related to genuine quantum correlations in the system. Thus, this work aims to contribute to the understanding of the caloric behavior of quantum systems and their potential implication in caloric devices.
量子热效应
量子热力学旨在探索量子特征,以提高超越经典极限的能量转换。虽然取得了重大进展,但对量子系统中热势的理解仍然不完整。在这种情况下,本研究的重点是通过发展从Ehrenfest定理的热平均形式获得的量子麦克斯韦关系,推导出这些热势的一般表达式。我们的结果恢复了经典情况,也揭示了系统中的等温熵变可以与真正的量子相关有关。因此,这项工作旨在有助于理解量子系统的热行为及其在热器件中的潜在含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信