{"title":"General shells and generalized functions","authors":"Albert Huber","doi":"10.1088/1361-6382/adcf6e","DOIUrl":null,"url":null,"abstract":"In this work, standard methods of the mixed thin-shell formalism are refined using the framework of Colombeau’s theory of generalized functions. To this end, systematic use is made of smooth generalized functions, in particular regularizations of the Heaviside step function and the delta distribution, instead of working directly with the corresponding Schwartz distributions. Based on this change of method, the resulting extended thin shell formalism is shown to offer a decisive advantage over traditional approaches to the subject: it avoids dealing with ill-defined products of distributions in the calculation of nonlinear curvature expressions, thereby allowing for the treatment of problems that prove intractable with the ‘conventional’ thin-shell formalism. This includes, in particular, the problem of matching singular spacetimes with distributional metrics (containing a delta distribution term) across a joint boundary hypersurface in spacetime, the problem of setting up the dominant energy condition for thin shells, and the problem of defining reasonably rigorously nonlinear distribution-valued curvature invariants needed in higher-derivative theories of gravity. Eventually, as a further application, close links to Penrose’s cut-and-paste method are established by proving that results of said method can be re-derived using the generalized formalism presented.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/adcf6e","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, standard methods of the mixed thin-shell formalism are refined using the framework of Colombeau’s theory of generalized functions. To this end, systematic use is made of smooth generalized functions, in particular regularizations of the Heaviside step function and the delta distribution, instead of working directly with the corresponding Schwartz distributions. Based on this change of method, the resulting extended thin shell formalism is shown to offer a decisive advantage over traditional approaches to the subject: it avoids dealing with ill-defined products of distributions in the calculation of nonlinear curvature expressions, thereby allowing for the treatment of problems that prove intractable with the ‘conventional’ thin-shell formalism. This includes, in particular, the problem of matching singular spacetimes with distributional metrics (containing a delta distribution term) across a joint boundary hypersurface in spacetime, the problem of setting up the dominant energy condition for thin shells, and the problem of defining reasonably rigorously nonlinear distribution-valued curvature invariants needed in higher-derivative theories of gravity. Eventually, as a further application, close links to Penrose’s cut-and-paste method are established by proving that results of said method can be re-derived using the generalized formalism presented.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.