{"title":"Structural Optimization of Pyrazole Compounds as Hsp90 Regulators with Enhanced Antitumor Activity","authors":"Zi-Wen Feng, Li Li, Shi-Duo Zhang, Ying-Ji Wang, Jia-Yue Pei, Nan-Nan Chen, Bei-Duo Wu, Qiu-Ling Zheng, Qi-Dong You, Xiao-Ke Guo, Xiao-Li Xu","doi":"10.1021/acs.jmedchem.4c02182","DOIUrl":null,"url":null,"abstract":"Targeting Hsp90 is an effective strategy for cancer therapy. TAS-116 has been approved for the treatment of gastrointestinal stromal tumors. Our previous studies identified a series of pyrazole derivatives as covalent Hsp90 inhibitors that allosterically disrupt the Hsp90-Cdc37 interaction. Here, through systematic structure–activity relationship (SAR) optimization, compound <b>39</b> (<b>DDO-6691</b>) with a new covalent warhead was developed, which demonstrates improved ADME properties and significantly enhanced antitumor activity. Notably, parental HCT-116 cells exhibited markedly greater sensitivity to compound <b>39</b> (IC<sub>50</sub> > 50 μM) compared to their Cdc37-knockout counterparts. Importantly, compound <b>39</b> displayed potent tumor growth inhibition in HCT-116 xenograft mouse models. These collective findings underscore the therapeutic promise of covalent Hsp90-targeted disruption of the Hsp90-Cdc37 complex, offering a novel mechanistic approach to cancer treatment.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"56 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02182","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting Hsp90 is an effective strategy for cancer therapy. TAS-116 has been approved for the treatment of gastrointestinal stromal tumors. Our previous studies identified a series of pyrazole derivatives as covalent Hsp90 inhibitors that allosterically disrupt the Hsp90-Cdc37 interaction. Here, through systematic structure–activity relationship (SAR) optimization, compound 39 (DDO-6691) with a new covalent warhead was developed, which demonstrates improved ADME properties and significantly enhanced antitumor activity. Notably, parental HCT-116 cells exhibited markedly greater sensitivity to compound 39 (IC50 > 50 μM) compared to their Cdc37-knockout counterparts. Importantly, compound 39 displayed potent tumor growth inhibition in HCT-116 xenograft mouse models. These collective findings underscore the therapeutic promise of covalent Hsp90-targeted disruption of the Hsp90-Cdc37 complex, offering a novel mechanistic approach to cancer treatment.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.