Wei Jiang, Zixuan Guo, Qin Wang, Ziqi Chen, Wang Dong, Qirui Liang, Yinghong Hao, Huimin Pan, Cici Zeng, Hang Liu, Yucai Wang
{"title":"Enhanced nanoparticle delivery across vascular basement membranes of tumours using nitric oxide","authors":"Wei Jiang, Zixuan Guo, Qin Wang, Ziqi Chen, Wang Dong, Qirui Liang, Yinghong Hao, Huimin Pan, Cici Zeng, Hang Liu, Yucai Wang","doi":"10.1038/s41551-025-01385-w","DOIUrl":null,"url":null,"abstract":"<p>The delivery of nanoparticles (NPs) into solid tumours is challenged by the tumour vascular basement membrane (BM), a critical barrier beneath the endothelium with robust mechanical properties resistant to conventional treatments. Here we propose an approach that uses nitric oxide (NO) to induce the opening of endothelial junctions, creating gaps between endothelial cells and enabling the navigation of NPs through these gaps. Subsequently, NO orchestrates a transient degradation of the BM encasing NP pools in a precise, localized action, allowing the enhanced passage of NPs into the tumour interstitial space through explosive eruptions. We have engineered a NO nanogenerator tailored for near-infrared laser-triggered on-demand NO release at tumour sites. Through breaching the BM barrier, this system results in an increase of clinical nanomedicines within the tumour, boosting the tumour suppression efficacy in both mouse and rabbit models. This approach delicately manages BM degradation, avoiding excessive degradation that might facilitate cancer metastasis. Our NO nanogenerator serves as a precise spatial catalytic degradation strategy for breaching the tumour vascular BM barrier, holding promise for NP delivery into non-tumour diseases.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"22 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01385-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The delivery of nanoparticles (NPs) into solid tumours is challenged by the tumour vascular basement membrane (BM), a critical barrier beneath the endothelium with robust mechanical properties resistant to conventional treatments. Here we propose an approach that uses nitric oxide (NO) to induce the opening of endothelial junctions, creating gaps between endothelial cells and enabling the navigation of NPs through these gaps. Subsequently, NO orchestrates a transient degradation of the BM encasing NP pools in a precise, localized action, allowing the enhanced passage of NPs into the tumour interstitial space through explosive eruptions. We have engineered a NO nanogenerator tailored for near-infrared laser-triggered on-demand NO release at tumour sites. Through breaching the BM barrier, this system results in an increase of clinical nanomedicines within the tumour, boosting the tumour suppression efficacy in both mouse and rabbit models. This approach delicately manages BM degradation, avoiding excessive degradation that might facilitate cancer metastasis. Our NO nanogenerator serves as a precise spatial catalytic degradation strategy for breaching the tumour vascular BM barrier, holding promise for NP delivery into non-tumour diseases.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.