When Graphitic Nitrogen Meets Pentagons: Selective Construction and Spectroscopic Evidence for Improved Four-Electron Oxygen Reduction Electrocatalysis
{"title":"When Graphitic Nitrogen Meets Pentagons: Selective Construction and Spectroscopic Evidence for Improved Four-Electron Oxygen Reduction Electrocatalysis","authors":"Xuya Zhu, Yangfan Shao, Dongsheng Xia, Yinping Wei, Zejian Li, Wei Liu, Nanshu Wang, Qianyuan Wu, Feng Ding, Jia Li, Feiyu Kang, Lin Gan","doi":"10.1002/adma.202414976","DOIUrl":null,"url":null,"abstract":"Nitrogen-doped carbon materials have emerged as promising metal-free electrocatalysts for oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. However, the structural inhomogeneity, particularly the coexistence of four nitrogen doping structures–pyridinic, graphitic, pyrrolic, and oxidized nitrogen–makes assessing their respective contributions challenging and controversial. The current understanding of the four nitrogen doping structures may be also oversimplified and even problematic. The development of a distinctive graphitic-N-doped carbon electrocatalyst is presented in which graphitic nitrogen coordinated with pentagon defects is selectively constructed. Contrary to the previously held belief that graphitic nitrogen has little effect on ORR electrocatalysis, the unique graphitic N configuration exhibited significantly enhanced four-electron ORR activity in both alkaline and acidic media. In situ electrochemical Raman spectroscopy combined with density functional theory calculations further revealed that graphitic nitrogen, when coordinated with pentagon defects, optimized the density of states near the Fermi level, leading to optimized binding energies with oxygen-containing intermediates. The results rationalize the long-standing controversy over the role of different nitrogen dopants in ORR electrocatalysis and suggest that there is considerable potential to precisely construct new nitrogen doping configurations to achieve superior electrocatalytic performance.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"136 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414976","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrogen-doped carbon materials have emerged as promising metal-free electrocatalysts for oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. However, the structural inhomogeneity, particularly the coexistence of four nitrogen doping structures–pyridinic, graphitic, pyrrolic, and oxidized nitrogen–makes assessing their respective contributions challenging and controversial. The current understanding of the four nitrogen doping structures may be also oversimplified and even problematic. The development of a distinctive graphitic-N-doped carbon electrocatalyst is presented in which graphitic nitrogen coordinated with pentagon defects is selectively constructed. Contrary to the previously held belief that graphitic nitrogen has little effect on ORR electrocatalysis, the unique graphitic N configuration exhibited significantly enhanced four-electron ORR activity in both alkaline and acidic media. In situ electrochemical Raman spectroscopy combined with density functional theory calculations further revealed that graphitic nitrogen, when coordinated with pentagon defects, optimized the density of states near the Fermi level, leading to optimized binding energies with oxygen-containing intermediates. The results rationalize the long-standing controversy over the role of different nitrogen dopants in ORR electrocatalysis and suggest that there is considerable potential to precisely construct new nitrogen doping configurations to achieve superior electrocatalytic performance.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.