The new strategies for high efficiency removal of antibiotics and antibiotic resistance genes by direct bio-drying of biogas slurry: Microbiological mechanisms
Zhenye Tong , Haorong Zhang , Siqin Li , Liqian Ma , Zhenguo Li , Xiaoyu Yong , Fenwu Liu , Jun Zhou
{"title":"The new strategies for high efficiency removal of antibiotics and antibiotic resistance genes by direct bio-drying of biogas slurry: Microbiological mechanisms","authors":"Zhenye Tong , Haorong Zhang , Siqin Li , Liqian Ma , Zhenguo Li , Xiaoyu Yong , Fenwu Liu , Jun Zhou","doi":"10.1016/j.watres.2025.123763","DOIUrl":null,"url":null,"abstract":"<div><div>High levels of antibiotics and antibiotic resistance genes (ARGs) still exist in biogas slurry after anaerobic digestion of cow manure. In this study, direct bio-drying strategies of cow manure biogas slurry without solid-liquid separation for the removal of antibiotics and ARGs were explored. The results showed that, after direct bio-drying of biogas slurry, the moisture contents decreased to 25.2 %–31.5 %. The maximum temperatures of the piles reached 76.1–77.4 °C, which is close to ultra-high temperatures (>80 °C). Direct biogas slurry bio-drying (CK treatment) achieved efficient removal of antibiotics, ARGs, and mobile genetic elements (MGEs) (95.4 %, 98.6 % and 86.7 % removal, respectively). Compared to the CK treatment, molecular membrane covering (MMC) alone was the most effective in further significantly decreasing the antibiotic concentration and the abundance of ARGs and MGEs in the final bio-dried samples, followed by food waste hydrochar (FHC) addition alone. Methanogenic archaea were identified as potential hosts for ARGs based on Network analysis. FHC addition–MMC increased the abundance of potential hosts for ARGs and promoted the expression of microbial methane metabolism function relative to the CK treatment during the later stages of bio-drying, thereby decreasing the removal efficiency of ARGs. The results of structural equation model and redundancy analysis showed that MGEs had the most significant direct effect on ARGs and moisture content had the highest relative contribution to changes in ARGs. In summary, direct bio-drying strategies were able to efficiently remove antibiotics and ARGs from cow manure biogas slurry and also achieve biological dewatering of the biogas slurry.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"283 ","pages":"Article 123763"},"PeriodicalIF":11.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425006724","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
High levels of antibiotics and antibiotic resistance genes (ARGs) still exist in biogas slurry after anaerobic digestion of cow manure. In this study, direct bio-drying strategies of cow manure biogas slurry without solid-liquid separation for the removal of antibiotics and ARGs were explored. The results showed that, after direct bio-drying of biogas slurry, the moisture contents decreased to 25.2 %–31.5 %. The maximum temperatures of the piles reached 76.1–77.4 °C, which is close to ultra-high temperatures (>80 °C). Direct biogas slurry bio-drying (CK treatment) achieved efficient removal of antibiotics, ARGs, and mobile genetic elements (MGEs) (95.4 %, 98.6 % and 86.7 % removal, respectively). Compared to the CK treatment, molecular membrane covering (MMC) alone was the most effective in further significantly decreasing the antibiotic concentration and the abundance of ARGs and MGEs in the final bio-dried samples, followed by food waste hydrochar (FHC) addition alone. Methanogenic archaea were identified as potential hosts for ARGs based on Network analysis. FHC addition–MMC increased the abundance of potential hosts for ARGs and promoted the expression of microbial methane metabolism function relative to the CK treatment during the later stages of bio-drying, thereby decreasing the removal efficiency of ARGs. The results of structural equation model and redundancy analysis showed that MGEs had the most significant direct effect on ARGs and moisture content had the highest relative contribution to changes in ARGs. In summary, direct bio-drying strategies were able to efficiently remove antibiotics and ARGs from cow manure biogas slurry and also achieve biological dewatering of the biogas slurry.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.