Behavior engineering using quantitative reinforcement learning models

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Ohad Dan, Ori Plonsky, Yonatan Loewenstein
{"title":"Behavior engineering using quantitative reinforcement learning models","authors":"Ohad Dan, Ori Plonsky, Yonatan Loewenstein","doi":"10.1038/s41467-025-58888-y","DOIUrl":null,"url":null,"abstract":"<p>Effectively shaping human and animal behavior is of great practical and theoretical importance. Here we ask whether quantitative models of choice can be used to achieve this goal more effectively than qualitative psychological principles. We term this approach, which is motivated by the effectiveness of engineering in the natural sciences, ‘choice engineering’. To address this question, we launched an academic competition, in which teams of academic competitors used either quantitative models or qualitative principles to design reward schedules that would maximally bias the choices of experimental participants in a repeated, two-alternative task. We found that a choice engineering approach is the most successful method for shaping behavior in our task. This is a proof of concept that quantitative models are ripe to be used in order to engineer behavior. Finally, we show that choice engineering can be effectively used to compare models in the cognitive sciences, thus providing an alternative to the standard statistical methods of model comparison that are based on likelihood or explained variance.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"9 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58888-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Effectively shaping human and animal behavior is of great practical and theoretical importance. Here we ask whether quantitative models of choice can be used to achieve this goal more effectively than qualitative psychological principles. We term this approach, which is motivated by the effectiveness of engineering in the natural sciences, ‘choice engineering’. To address this question, we launched an academic competition, in which teams of academic competitors used either quantitative models or qualitative principles to design reward schedules that would maximally bias the choices of experimental participants in a repeated, two-alternative task. We found that a choice engineering approach is the most successful method for shaping behavior in our task. This is a proof of concept that quantitative models are ripe to be used in order to engineer behavior. Finally, we show that choice engineering can be effectively used to compare models in the cognitive sciences, thus providing an alternative to the standard statistical methods of model comparison that are based on likelihood or explained variance.

Abstract Image

使用定量强化学习模型的行为工程
有效地塑造人类和动物的行为具有重要的实践和理论意义。在这里,我们要问选择的定量模型是否可以比定性心理学原理更有效地用于实现这一目标。我们称这种方法为“选择工程”,它是由自然科学中工程的有效性所驱动的。为了解决这个问题,我们发起了一项学术竞赛,由学术竞赛对手组成的团队使用定量模型或定性原则来设计奖励计划,以最大限度地偏向实验参与者在重复的两种选择任务中的选择。我们发现选择工程方法是在我们的任务中塑造行为的最成功的方法。这是一个概念的证明,定量模型已经成熟,可以用来设计行为。最后,我们表明选择工程可以有效地用于比较认知科学中的模型,从而为基于似然或解释方差的模型比较的标准统计方法提供了一种替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信