Mitchel L. Tepe , Yitan Chen , Allison Carso , Huiqing Zhou
{"title":"MapID-based quantitative mapping of chemical modifications and expression of human transfer RNA","authors":"Mitchel L. Tepe , Yitan Chen , Allison Carso , Huiqing Zhou","doi":"10.1016/j.chembiol.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>Detection and quantification of tRNA chemical modifications are critical for understanding their regulatory functions in biology and diseases. However, tRNA-seq–based methods for modification mapping encountered challenges both experimentally (poor processivity of heavily modified tRNAs during reverse transcription or RT) and bioinformatically (frequent reads misalignment to highly similar tRNA genes). Here, we report “MapID-tRNA-seq” where we deployed an evolved reverse transcriptase (RT-1306) into tRNA-seq and developed “MapIDs” that reduce redundancy of the human tRNA genome and explicitly annotate genetic variances. RT-1306 generated robust mutations against m<sup>1</sup>A and m<sup>3</sup>C, and RT stops against multiple bulky roadblock modifications. MapID-assisted data processing enabled systematic exclusion of false-positive discoveries of modifications which arise from reads misalignment onto similar genes. We applied MapID-tRNA-seq into mapping m<sup>1</sup>A, m<sup>3</sup>C and expression levels of tRNAs in three mammary cell lines, which revealed cell-type dependent modification sites and potential translational regulation of the reduced mitochondrial activities in breast cancer.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"32 5","pages":"Pages 752-766.e7"},"PeriodicalIF":6.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945625001254","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Detection and quantification of tRNA chemical modifications are critical for understanding their regulatory functions in biology and diseases. However, tRNA-seq–based methods for modification mapping encountered challenges both experimentally (poor processivity of heavily modified tRNAs during reverse transcription or RT) and bioinformatically (frequent reads misalignment to highly similar tRNA genes). Here, we report “MapID-tRNA-seq” where we deployed an evolved reverse transcriptase (RT-1306) into tRNA-seq and developed “MapIDs” that reduce redundancy of the human tRNA genome and explicitly annotate genetic variances. RT-1306 generated robust mutations against m1A and m3C, and RT stops against multiple bulky roadblock modifications. MapID-assisted data processing enabled systematic exclusion of false-positive discoveries of modifications which arise from reads misalignment onto similar genes. We applied MapID-tRNA-seq into mapping m1A, m3C and expression levels of tRNAs in three mammary cell lines, which revealed cell-type dependent modification sites and potential translational regulation of the reduced mitochondrial activities in breast cancer.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.