Shear Stress-Triggered Thrombolysis by Yolk–Shell Nanoparticles with Piezoelectric-Tribovoltaic Dynamic Schottky Junctions

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huan Zheng, Pan Ran, Wenxiong Cao, Guiyuan Zhang, Yupeng Su, Kang Zhang, Xiaohong Li
{"title":"Shear Stress-Triggered Thrombolysis by Yolk–Shell Nanoparticles with Piezoelectric-Tribovoltaic Dynamic Schottky Junctions","authors":"Huan Zheng, Pan Ran, Wenxiong Cao, Guiyuan Zhang, Yupeng Su, Kang Zhang, Xiaohong Li","doi":"10.1002/adfm.202503751","DOIUrl":null,"url":null,"abstract":"Triboelectric nanogenerators convert the mechanical energy of human body motions into sustained electric powers, but the triboelectric effect is not yet integrated with pathological microenvironments. Herein, endogenous shear stress-responsive platforms are designed for tribocatalytic thrombolysis through sequential deposition of SiO<sub>2</sub> and Au layer onto tetragonal barium titanate (tBT) nanoparticles (NPs), followed by SiO<sub>2</sub> layer etching and surface grafting of arginine-glycine-aspartic acid (RGD) to obtain yolk–shell-structured tBT@Au-RGD NPs. High-frequency frictions and collisions between tBT yolks and Au shells continuously stimulate electron–hole pairs and reactive oxygen species (ROS) generations, and the dynamic Schottky junctions provide electron channels from tBT to Au to inhibit electron–hole recombinations. The piezopotential of tBT further promotes electron–hole separations and acts synergistically with tribovoltaic ROS generation for degrading fibrin networks of thrombi. In a loop-closed flow system demonstrates shear stress-adaptable ROS generations under embolization degrees from 20% to 80%. In a carotid thrombosis model RGD grafts increase NP accumulations four folds at the thrombus site after 24 h of intravenous administration, and the stenosis degree is reduced to 3.99% with complete blood vessel recanalization and negligible bleeding risk and systemic toxicity. This study is the first attempt to demonstrate endogenous stimuli-induced tribovoltaic and piezoelectric effects for tribocatalytic disease treatment.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"15 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202503751","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric nanogenerators convert the mechanical energy of human body motions into sustained electric powers, but the triboelectric effect is not yet integrated with pathological microenvironments. Herein, endogenous shear stress-responsive platforms are designed for tribocatalytic thrombolysis through sequential deposition of SiO2 and Au layer onto tetragonal barium titanate (tBT) nanoparticles (NPs), followed by SiO2 layer etching and surface grafting of arginine-glycine-aspartic acid (RGD) to obtain yolk–shell-structured tBT@Au-RGD NPs. High-frequency frictions and collisions between tBT yolks and Au shells continuously stimulate electron–hole pairs and reactive oxygen species (ROS) generations, and the dynamic Schottky junctions provide electron channels from tBT to Au to inhibit electron–hole recombinations. The piezopotential of tBT further promotes electron–hole separations and acts synergistically with tribovoltaic ROS generation for degrading fibrin networks of thrombi. In a loop-closed flow system demonstrates shear stress-adaptable ROS generations under embolization degrees from 20% to 80%. In a carotid thrombosis model RGD grafts increase NP accumulations four folds at the thrombus site after 24 h of intravenous administration, and the stenosis degree is reduced to 3.99% with complete blood vessel recanalization and negligible bleeding risk and systemic toxicity. This study is the first attempt to demonstrate endogenous stimuli-induced tribovoltaic and piezoelectric effects for tribocatalytic disease treatment.

Abstract Image

具有压电-摩擦伏动态肖特基结的蛋黄壳纳米颗粒剪切应力触发溶栓
摩擦电纳米发电机将人体运动的机械能转化为持续的电能,但摩擦电效应尚未与病理微环境相结合。本文设计了内源性剪切应力响应平台,通过将SiO2和Au层依次沉积在四方钛酸钡(tBT)纳米颗粒(NPs)上,然后对SiO2层进行蚀刻和精氨酸-甘氨酸-天冬氨酸(RGD)的表面接嫁接,得到蛋黄壳结构的tBT@Au-RGD NPs。tBT蛋黄和Au壳层之间的高频摩擦和碰撞不断刺激电子-空穴对和活性氧(ROS)的产生,动态肖特基结提供了从tBT到Au的电子通道,以抑制电子-空穴复合。tBT的压电进一步促进电子空穴分离,并与摩擦伏打ROS产生协同作用,降解血栓的纤维蛋白网络。在闭环流动系统中,在栓塞程度为20%至80%的情况下,ROS世代具有剪切应力适应性。在颈动脉血栓形成模型中,静脉给药24 h后,RGD移植物使血栓部位的NP积累增加4倍,狭窄程度降至3.99%,血管再通完全,出血风险和全身毒性可忽略不计。这项研究是首次尝试证明内源性刺激诱导的摩擦伏打和压电效应对摩擦催化疾病的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信