Lukian M. D. Adams, Iain M. Suthers, David A. Crook, Jason D. Thiem, Richard T. Kingsford, David Ryan, Katherine J. M. Cheshire, Hayden T. Schilling
{"title":"Barrier features, fish traits, and river flows drive fragmentation of freshwater fish","authors":"Lukian M. D. Adams, Iain M. Suthers, David A. Crook, Jason D. Thiem, Richard T. Kingsford, David Ryan, Katherine J. M. Cheshire, Hayden T. Schilling","doi":"10.1002/ecm.70014","DOIUrl":null,"url":null,"abstract":"<p>Instream structures such as dams and weirs create artificial barriers to the passage of riverine fish, fragmenting their communities and contributing to global declines in freshwater fish biodiversity. Preventing further declines requires the remediation of barriers to restore fish passage, but analysis of fragmented fish communities is necessary to prioritize locations and fish taxa for remediation. Additionally, the potential for high flow events to facilitate barrier drown-out and reduce fragmentation remains unresolved. We used a meta-regression analysis to investigate the severity of fish fragmentation in relation to barrier features, fish traits, and river flows, quantifying fragmentation with a novel log response ratio metric reflecting the asymmetry of fish populations around barriers. We discovered that high barriers, barriers which separate different sized habitats, and clusters of sequential barriers cause more severe fragmentation and should be prioritized for remediation. Currently, barrier remediation is focused on improving passage for mobile fishes, but taxa which migrate short distances and have poor swimming performance were most fragmented, suggesting efforts are warranted to improve passage for less vagile fishes. We found evidence that fragmentation was reduced by large river flows which spill onto the floodplain and provide additional connectivity around barriers, particularly in highly regulated sections of stream with many sequential barriers. The findings of this study can be applied to improve the management of fish passage in rivers, an area of increasing relevance with the worsening discontinuity of rivers due to climate change and the continued construction of barriers.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 2","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70014","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Instream structures such as dams and weirs create artificial barriers to the passage of riverine fish, fragmenting their communities and contributing to global declines in freshwater fish biodiversity. Preventing further declines requires the remediation of barriers to restore fish passage, but analysis of fragmented fish communities is necessary to prioritize locations and fish taxa for remediation. Additionally, the potential for high flow events to facilitate barrier drown-out and reduce fragmentation remains unresolved. We used a meta-regression analysis to investigate the severity of fish fragmentation in relation to barrier features, fish traits, and river flows, quantifying fragmentation with a novel log response ratio metric reflecting the asymmetry of fish populations around barriers. We discovered that high barriers, barriers which separate different sized habitats, and clusters of sequential barriers cause more severe fragmentation and should be prioritized for remediation. Currently, barrier remediation is focused on improving passage for mobile fishes, but taxa which migrate short distances and have poor swimming performance were most fragmented, suggesting efforts are warranted to improve passage for less vagile fishes. We found evidence that fragmentation was reduced by large river flows which spill onto the floodplain and provide additional connectivity around barriers, particularly in highly regulated sections of stream with many sequential barriers. The findings of this study can be applied to improve the management of fish passage in rivers, an area of increasing relevance with the worsening discontinuity of rivers due to climate change and the continued construction of barriers.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.