How Does Maternal Lipopolysaccharide Exposure Impact Prenatal Testicular Development in Rats, and Could α-Tocopherol Provide a Protective Effect? A Histological, Immunohistochemical and Biochemical Study
Shimaa Antar Fareed, Heba El-Sayed Mostafa, Yousif Mohamed Saleh, Yasmin Islam Magdi, Islam Mohamed Magdi Ammar
{"title":"How Does Maternal Lipopolysaccharide Exposure Impact Prenatal Testicular Development in Rats, and Could α-Tocopherol Provide a Protective Effect? A Histological, Immunohistochemical and Biochemical Study","authors":"Shimaa Antar Fareed, Heba El-Sayed Mostafa, Yousif Mohamed Saleh, Yasmin Islam Magdi, Islam Mohamed Magdi Ammar","doi":"10.1002/bdr2.2469","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Lipopolysaccharides or endotoxins trigger proinflammatory cytokines and nitric oxide release, whereas α-tocopherol protects cells from oxidative damage. This study investigated the effects of maternal lipopolysaccharide exposure on prenatal testicular development in male rat offspring and assessed α-tocopherol's protective role.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Forty pregnant female rats were divided into four groups. Group I (control) included a negative control receiving normal saline and a positive control receiving 30 mg/kg of α-tocopherol intraperitoneally from the 3rd to 18th gestational day. Group II received 50 mg/kg of lipopolysaccharides intraperitoneally from the 13th to 17th gestational day, whereas Group III received both α-tocopherol and lipopolysaccharides at the same dosages. On the seventh day postpartum, fetuses were weighed, sexed, and dissected; sera from male fetuses were collected for biochemical analysis, and fetal testes were used for histology, immunohistochemistry, and morphometry.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Rats treated with lipopolysaccharide showed reduced body weight, testosterone, and luteinizing hormone levels, with histopathological changes, including thickened testicular capsules and abnormalities in the number, size, shape, and cellular components of seminiferous tubules. These adverse effects were improved by α-tocopherol supplementation.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>We concluded that lipopolysaccharide exposure during pregnancy impairs testicular development and steroidogenesis, which are ameliorated by α-tocopherol coadministration.</p>\n </section>\n </div>","PeriodicalId":9121,"journal":{"name":"Birth Defects Research","volume":"117 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2469","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Lipopolysaccharides or endotoxins trigger proinflammatory cytokines and nitric oxide release, whereas α-tocopherol protects cells from oxidative damage. This study investigated the effects of maternal lipopolysaccharide exposure on prenatal testicular development in male rat offspring and assessed α-tocopherol's protective role.
Methods
Forty pregnant female rats were divided into four groups. Group I (control) included a negative control receiving normal saline and a positive control receiving 30 mg/kg of α-tocopherol intraperitoneally from the 3rd to 18th gestational day. Group II received 50 mg/kg of lipopolysaccharides intraperitoneally from the 13th to 17th gestational day, whereas Group III received both α-tocopherol and lipopolysaccharides at the same dosages. On the seventh day postpartum, fetuses were weighed, sexed, and dissected; sera from male fetuses were collected for biochemical analysis, and fetal testes were used for histology, immunohistochemistry, and morphometry.
Results
Rats treated with lipopolysaccharide showed reduced body weight, testosterone, and luteinizing hormone levels, with histopathological changes, including thickened testicular capsules and abnormalities in the number, size, shape, and cellular components of seminiferous tubules. These adverse effects were improved by α-tocopherol supplementation.
Conclusion
We concluded that lipopolysaccharide exposure during pregnancy impairs testicular development and steroidogenesis, which are ameliorated by α-tocopherol coadministration.
期刊介绍:
The journal Birth Defects Research publishes original research and reviews in areas related to the etiology of adverse developmental and reproductive outcome. In particular the journal is devoted to the publication of original scientific research that contributes to the understanding of the biology of embryonic development and the prenatal causative factors and mechanisms leading to adverse pregnancy outcomes, namely structural and functional birth defects, pregnancy loss, postnatal functional defects in the human population, and to the identification of prenatal factors and biological mechanisms that reduce these risks.
Adverse reproductive and developmental outcomes may have genetic, environmental, nutritional or epigenetic causes. Accordingly, the journal Birth Defects Research takes an integrated, multidisciplinary approach in its organization and publication strategy. The journal Birth Defects Research contains separate sections for clinical and molecular teratology, developmental and reproductive toxicology, and reviews in developmental biology to acknowledge and accommodate the integrative nature of research in this field. Each section has a dedicated editor who is a leader in his/her field and who has full editorial authority in his/her area.