M. Erfan Farhikhteh, E. M. Papoutsis Kiachagias, K. C. Giannakoglou
{"title":"Continuous Adjoint to Proudman's Formula for Aeroacoustic Shape Optimization","authors":"M. Erfan Farhikhteh, E. M. Papoutsis Kiachagias, K. C. Giannakoglou","doi":"10.1002/fld.5378","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an approach for aeroacoustic optimization through the reduction of acoustic sources, based on the integration of Proudman's formula into a continuous adjoint framework coupled with the Reynolds-averaged Navier–Stokes equations, for the first-time. The development includes the adjoint to the <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mi>ω</mi>\n <mspace></mspace>\n <mi>S</mi>\n <mi>S</mi>\n <mi>T</mi>\n </mrow>\n <annotation>$$ k-\\omega \\kern0.3em SST $$</annotation>\n </semantics></math> turbulence model. Here, Proudman's formula is used to compute acoustic emissions of turbulent flows around aerodynamic bodies using the turbulent kinetic energy and specific rate of dissipation. Broadband noise generation through Proudman's formula is initially validated for a case including the flow around an isolated airfoil. Subsequently, the sensitivity derivatives of an objective function quantifying acoustic sources are verified against finite differences, with optimizations of two isolated airfoils and the MEXICO wind turbine following. Optimizations are conducted by extending the <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n <mi>d</mi>\n <mi>j</mi>\n <mi>o</mi>\n <mi>i</mi>\n <mi>n</mi>\n <mi>t</mi>\n <mi>O</mi>\n <mi>p</mi>\n <mi>t</mi>\n <mi>i</mi>\n <mi>m</mi>\n <mi>i</mi>\n <mi>s</mi>\n <mi>a</mi>\n <mi>t</mi>\n <mi>i</mi>\n <mi>o</mi>\n <mi>n</mi>\n <mi>F</mi>\n <mi>o</mi>\n <mi>a</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$$ adjointOptimisationFoam $$</annotation>\n </semantics></math> tool in OpenFOAM, developed and made publicly available by the group. During the optimization, constraints on the lift force, the drag force, the pitching moment coefficient, the torque, the trailing edge thickness, and airfoil volume are imposed, depending on the case. The geometries and grids are parameterized using PARSEC and morphing boxes based on volumetric B-Splines. The optimizations result in shapes with reduced acoustic sources while preserving aerodynamic efficiency, highlighting the effectiveness of the proposed method and programmed software.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 6","pages":"966-984"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5378","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an approach for aeroacoustic optimization through the reduction of acoustic sources, based on the integration of Proudman's formula into a continuous adjoint framework coupled with the Reynolds-averaged Navier–Stokes equations, for the first-time. The development includes the adjoint to the turbulence model. Here, Proudman's formula is used to compute acoustic emissions of turbulent flows around aerodynamic bodies using the turbulent kinetic energy and specific rate of dissipation. Broadband noise generation through Proudman's formula is initially validated for a case including the flow around an isolated airfoil. Subsequently, the sensitivity derivatives of an objective function quantifying acoustic sources are verified against finite differences, with optimizations of two isolated airfoils and the MEXICO wind turbine following. Optimizations are conducted by extending the tool in OpenFOAM, developed and made publicly available by the group. During the optimization, constraints on the lift force, the drag force, the pitching moment coefficient, the torque, the trailing edge thickness, and airfoil volume are imposed, depending on the case. The geometries and grids are parameterized using PARSEC and morphing boxes based on volumetric B-Splines. The optimizations result in shapes with reduced acoustic sources while preserving aerodynamic efficiency, highlighting the effectiveness of the proposed method and programmed software.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.