Enhancing fault detection in wastewater treatment plants: a multi-scale principal component analysis approach with the Kantorovich distance

IF 3.1 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
K. Ramakrishna Kini, Fouzi Harrou, Muddu Madakyaru and Ying Sun
{"title":"Enhancing fault detection in wastewater treatment plants: a multi-scale principal component analysis approach with the Kantorovich distance","authors":"K. Ramakrishna Kini, Fouzi Harrou, Muddu Madakyaru and Ying Sun","doi":"10.1039/D4EW00831F","DOIUrl":null,"url":null,"abstract":"<p >Anomaly detection in wastewater treatment plants (WWTPs) is critical for ensuring their reliable operation and preventing system failures. This paper proposes an advanced monitoring scheme that integrates multiscale principal component analysis (PCA) with a Kantorovich distance (KD)-driven monitoring approach to enhance WWTP monitoring in noisy environments. The combination of wavelet-based multiscale filtering with PCA effectively denoises the data, while the KD-driven scheme offers a robust metric for detecting deviations from normal operating conditions. This approach does not require labeled data and employs the nonparametric Kantorovich distance (KD) test, providing a flexible and practical solution for anomaly detection. Validation using data from the COST benchmark simulation model (BSM1) demonstrates the effectiveness of the proposed methods. The study evaluates different sensor faults—bias, intermittent, and aging—at varying signal-to-noise ratio (SNR) levels and explores the impact of different wavelet bases and decomposition levels on denoising and detection performance. The results show that the proposed scheme outperforms traditional PCA and multiscale PCA-based techniques, offering improved anomaly detection capabilities in the presence of significant noise.</p>","PeriodicalId":75,"journal":{"name":"Environmental Science: Water Research & Technology","volume":" 5","pages":" 1215-1232"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ew/d4ew00831f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Water Research & Technology","FirstCategoryId":"93","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ew/d4ew00831f","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection in wastewater treatment plants (WWTPs) is critical for ensuring their reliable operation and preventing system failures. This paper proposes an advanced monitoring scheme that integrates multiscale principal component analysis (PCA) with a Kantorovich distance (KD)-driven monitoring approach to enhance WWTP monitoring in noisy environments. The combination of wavelet-based multiscale filtering with PCA effectively denoises the data, while the KD-driven scheme offers a robust metric for detecting deviations from normal operating conditions. This approach does not require labeled data and employs the nonparametric Kantorovich distance (KD) test, providing a flexible and practical solution for anomaly detection. Validation using data from the COST benchmark simulation model (BSM1) demonstrates the effectiveness of the proposed methods. The study evaluates different sensor faults—bias, intermittent, and aging—at varying signal-to-noise ratio (SNR) levels and explores the impact of different wavelet bases and decomposition levels on denoising and detection performance. The results show that the proposed scheme outperforms traditional PCA and multiscale PCA-based techniques, offering improved anomaly detection capabilities in the presence of significant noise.

Abstract Image

加强污水处理厂故障检测:基于Kantorovich距离的多尺度主成分分析方法
污水处理厂异常检测对于确保其可靠运行和防止系统故障至关重要。本文提出了一种将多尺度主成分分析(PCA)与Kantorovich距离(KD)驱动的监测方法相结合的先进监测方案,以增强噪声环境下污水处理系统的监测。基于小波的多尺度滤波与PCA的结合有效地去噪了数据,而kd驱动的方案为检测偏离正常操作条件提供了稳健的度量。该方法不需要标记数据,采用非参数Kantorovich距离(KD)检验,为异常检测提供了灵活实用的解决方案。使用COST基准仿真模型(BSM1)的数据验证了所提出方法的有效性。该研究评估了不同信噪比(SNR)水平下的不同传感器故障(偏差、间歇和老化),并探讨了不同小波基和分解水平对去噪和检测性能的影响。结果表明,该方案优于传统的PCA和基于多尺度PCA的技术,在存在明显噪声的情况下提供了更好的异常检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Water Research & Technology
Environmental Science: Water Research & Technology ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
8.60
自引率
4.00%
发文量
206
期刊介绍: Environmental Science: Water Research & Technology seeks to showcase high quality research about fundamental science, innovative technologies, and management practices that promote sustainable water.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信