{"title":"Novel Planar Waveguide-Coupled D-Shaped Optical Fiber Sensor to Generate Fano Resonance for Enhanced Refractive Index Sensing Applications","authors":"Rajiv Maurya;Ankit Mishra;Chandan Singh Yadav;Abhishek Upadhyay;Gaurav Sharma;Vivek Singh","doi":"10.1109/JSEN.2025.3552984","DOIUrl":null,"url":null,"abstract":"In this article, the generation of Fano resonance (FR) in a novel optical fiber platform, which addresses a significant challenge within the scientific community, is theoretically investigated. The proposed sensor is designed with a D-shaped surface plasmon resonance (SPR) fiber coupled with a three-layer planar waveguide (PWG) structure for inline and enhanced refractive index (RI) sensing applications. Our analysis demonstrates that an optimum thickness of low index dielectric material, i.e., cytop fluoropolymer, as a coupling layer is required to generate FR in association with SPR. It is observed that the FR demonstrates a significant enhancement in the figure of merit (FOM), achieving 6383 RIU<sup>-1</sup> for wavelength interrogation and 13 195 a.u./RIU for intensity interrogation at <inline-formula> <tex-math>${d} _{f} \\,\\, =520$ </tex-math></inline-formula> nm and <inline-formula> <tex-math>${d} _{c} \\,\\, =700$ </tex-math></inline-formula> nm. These values greatly surpass the FOM of conventional SPR-based sensors, which are 34.90 RIU<sup>-1</sup> and 39.96 a.u./RIU. Also, the FOM increases by increasing the thickness of coupling layer. Furthermore, FWHM of the FR is consistent with the length of D-shaped region, whereas FWHM of SPR increases as the length of D-shaped region increases. The penetration depth of FR mode’s evanescent field in the sensing region also increases with the film layer thickness, consistently exceeding the penetration depth of SPR (122.47 nm). Hence, the FR mode is proposed as the sensing signal instead of conventional SPR mode because it offers superior performance compared in terms of FOM and penetration depth.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"15109-15115"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10944244/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the generation of Fano resonance (FR) in a novel optical fiber platform, which addresses a significant challenge within the scientific community, is theoretically investigated. The proposed sensor is designed with a D-shaped surface plasmon resonance (SPR) fiber coupled with a three-layer planar waveguide (PWG) structure for inline and enhanced refractive index (RI) sensing applications. Our analysis demonstrates that an optimum thickness of low index dielectric material, i.e., cytop fluoropolymer, as a coupling layer is required to generate FR in association with SPR. It is observed that the FR demonstrates a significant enhancement in the figure of merit (FOM), achieving 6383 RIU-1 for wavelength interrogation and 13 195 a.u./RIU for intensity interrogation at ${d} _{f} \,\, =520$ nm and ${d} _{c} \,\, =700$ nm. These values greatly surpass the FOM of conventional SPR-based sensors, which are 34.90 RIU-1 and 39.96 a.u./RIU. Also, the FOM increases by increasing the thickness of coupling layer. Furthermore, FWHM of the FR is consistent with the length of D-shaped region, whereas FWHM of SPR increases as the length of D-shaped region increases. The penetration depth of FR mode’s evanescent field in the sensing region also increases with the film layer thickness, consistently exceeding the penetration depth of SPR (122.47 nm). Hence, the FR mode is proposed as the sensing signal instead of conventional SPR mode because it offers superior performance compared in terms of FOM and penetration depth.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice