Comments on “Generalized Co-Prime MIMO Radar for DOA Estimation With Enhanced Degrees of Freedom”

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rajen Kumar Patra;Anindya Sundar Dhar
{"title":"Comments on “Generalized Co-Prime MIMO Radar for DOA Estimation With Enhanced Degrees of Freedom”","authors":"Rajen Kumar Patra;Anindya Sundar Dhar","doi":"10.1109/JSEN.2025.3552712","DOIUrl":null,"url":null,"abstract":"It is known that in direction-of-arrival (DOA) estimation with a coprime multiple-input-multiple-output (MIMO) radar, the lags of the generalized sum and difference coarray (GSDC) can be utilized. Shi et al. carried out a commendable work in proposing a novel coprime MIMO radar configuration for DOA estimation, where the intersensor spacing of the transmitter array of the configuration is expanded by a specific expansion factor. The authors analyzed the structure using three different cases based on different expansion factors of the transmitter. The mathematical formulas of the uniform and unique lags of the GSDC are provided for each of the cases. However, there is a mistake in the expression of the unique lags of the GSDC for the case where it provides the maximum unique lags by using the largest expansion factor. In fact, we will prove that for <inline-formula> <tex-math>${M}\\neq {2}$ </tex-math></inline-formula> (where <italic>M</i> is the parameter of the coprime array), there will always be an error whenever we calculate the unique lags of the GSDC of the coprime MIMO configuration by the expression provided in <xref>Table I</xref> of that article. Here, we provide the correct expression of the unique lags of the GSDC for this case and also carry out the corresponding proof of that expression. We also comment in detail why this correction is not required for <inline-formula> <tex-math>${M}={2}$ </tex-math></inline-formula>.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 9","pages":"16528-16532"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10938127/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that in direction-of-arrival (DOA) estimation with a coprime multiple-input-multiple-output (MIMO) radar, the lags of the generalized sum and difference coarray (GSDC) can be utilized. Shi et al. carried out a commendable work in proposing a novel coprime MIMO radar configuration for DOA estimation, where the intersensor spacing of the transmitter array of the configuration is expanded by a specific expansion factor. The authors analyzed the structure using three different cases based on different expansion factors of the transmitter. The mathematical formulas of the uniform and unique lags of the GSDC are provided for each of the cases. However, there is a mistake in the expression of the unique lags of the GSDC for the case where it provides the maximum unique lags by using the largest expansion factor. In fact, we will prove that for ${M}\neq {2}$ (where M is the parameter of the coprime array), there will always be an error whenever we calculate the unique lags of the GSDC of the coprime MIMO configuration by the expression provided in Table I of that article. Here, we provide the correct expression of the unique lags of the GSDC for this case and also carry out the corresponding proof of that expression. We also comment in detail why this correction is not required for ${M}={2}$ .
对“增强自由度的广义共素数MIMO雷达DOA估计”的评述
在多输入多输出(MIMO)雷达的到达方向(DOA)估计中,可以利用广义和差分同轴阵列(GSDC)的滞后。Shi等人进行了一项值得称赞的工作,提出了一种用于DOA估计的新型互质MIMO雷达配置,其中该配置的发射机阵列的传感器间间距通过特定的扩展因子进行扩展。根据变送器的不同膨胀系数,采用三种不同的情况对其结构进行了分析。给出了两种情况下GSDC均匀滞后和唯一滞后的数学公式。然而,在GSDC的唯一滞后的表达中存在一个错误,即它通过使用最大的扩展因子来提供最大的唯一滞后。事实上,我们将证明,对于${M}\neq{2}$(其中M是协素数数组的参数),每当我们通过本文表1提供的表达式计算协素数MIMO配置的GSDC的唯一滞后时,总是会出现错误。在这里,我们给出了这种情况下GSDC的唯一滞后的正确表达式,并对该表达式进行了相应的证明。我们还详细说明了为什么不需要对${M}={2}$进行此更正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信