Analyzing and Exploiting Memory Hierarchy Parallelism With MLP Stacks

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Adnan Hasnat;Wim Heirman;Shoaib Akram
{"title":"Analyzing and Exploiting Memory Hierarchy Parallelism With MLP Stacks","authors":"Adnan Hasnat;Wim Heirman;Shoaib Akram","doi":"10.1109/LCA.2025.3558808","DOIUrl":null,"url":null,"abstract":"Obtaining high instruction throughput on modern CPUs requires generating a high degree of memory-level parallelism (MLP). MLP is typically reported as a quantitative metric at the DRAM level. However, understanding the reasons that hinder memory parallelism requires more insightful metrics and visualizations. This paper proposes a new taxonomy of MLP metrics, splitting MLP into core and prefetch components and measuring both miss and hit cache level parallelism. Our key contribution is an MLP stack, a visualization that integrates these metrics, and connects then to performance by showing the CPI contribution of each memory level. The stack also shows speculative parallelism from dependency-bound and structural-hazard-bound loads. We implement the MLP stack in a processor simulator and conduct case studies that demonstrate the potential for targeting software optimizations (e.g., software prefetching), and hardware improvements (e.g., instruction window sizing).","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":"24 1","pages":"125-128"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10955451/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining high instruction throughput on modern CPUs requires generating a high degree of memory-level parallelism (MLP). MLP is typically reported as a quantitative metric at the DRAM level. However, understanding the reasons that hinder memory parallelism requires more insightful metrics and visualizations. This paper proposes a new taxonomy of MLP metrics, splitting MLP into core and prefetch components and measuring both miss and hit cache level parallelism. Our key contribution is an MLP stack, a visualization that integrates these metrics, and connects then to performance by showing the CPI contribution of each memory level. The stack also shows speculative parallelism from dependency-bound and structural-hazard-bound loads. We implement the MLP stack in a processor simulator and conduct case studies that demonstrate the potential for targeting software optimizations (e.g., software prefetching), and hardware improvements (e.g., instruction window sizing).
利用MLP栈分析和开发内存层次并行性
在现代cpu上获得高指令吞吐量需要生成高度的内存级并行性(MLP)。MLP通常作为DRAM级别的定量度量来报告。然而,理解阻碍内存并行性的原因需要更有洞察力的指标和可视化。本文提出了一种新的MLP度量分类法,将MLP划分为核心和预取组件,并测量未命中和命中缓存级并行性。我们的主要贡献是一个MLP堆栈,一个集成这些指标的可视化,并通过显示每个内存级别的CPI贡献将其与性能联系起来。该堆栈还显示了依赖绑定和结构危险绑定负载的推测并行性。我们在处理器模拟器中实现了MLP堆栈,并进行了案例研究,以展示针对软件优化(例如,软件预取)和硬件改进(例如,指令窗口大小)的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信