Toward a Time-Bounded Solution for Real-Time Latency Prediction in Dynamic 5G Communication

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Andrea Nota;Lisa Maile;Selma Saidi
{"title":"Toward a Time-Bounded Solution for Real-Time Latency Prediction in Dynamic 5G Communication","authors":"Andrea Nota;Lisa Maile;Selma Saidi","doi":"10.1109/OJCOMS.2025.3562726","DOIUrl":null,"url":null,"abstract":"The growing adoption of safety-critical applications in domains such as Industry 4.0 and autonomous driving places strict latency requirements on Fifth Generation (5G) wireless networks. Existing approaches typically rely on latency measurements, detecting violations only after they occur, or on pre-planned network configurations, which are impractical in highly dynamic environments such as mobile device communication. In this work, we propose a proactive analytical approach for predicting Worst-Case Latencies (WCLs) in 5G networks before violations occur. Our method derives upper bounds on latency analytically, ensuring both explainability and computational efficiency. Additionally, we introduce the concept of a Validity Interval (VI), which quantifies how long a latency prediction remains valid. We extensively evaluate our solution in synthetic and realistic simulations to define the impact of key parameters of our new model on global pessimism, computational overhead, and accuracy. Our results show that with complete knowledge of future channel conditions, our analytical model can consistently upper-bound the simulated worst-case latencies. Even with limited knowledge about future channel conditions, using state-of-the-art forecasting methods, our approach still bounds 99.8% of actual latencies, demonstrating its robustness. With this, our works demonstrate that future 5G networks can enable safe and reliable real-time applications even in highly dynamic environments.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"3853-3867"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10971387","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10971387/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The growing adoption of safety-critical applications in domains such as Industry 4.0 and autonomous driving places strict latency requirements on Fifth Generation (5G) wireless networks. Existing approaches typically rely on latency measurements, detecting violations only after they occur, or on pre-planned network configurations, which are impractical in highly dynamic environments such as mobile device communication. In this work, we propose a proactive analytical approach for predicting Worst-Case Latencies (WCLs) in 5G networks before violations occur. Our method derives upper bounds on latency analytically, ensuring both explainability and computational efficiency. Additionally, we introduce the concept of a Validity Interval (VI), which quantifies how long a latency prediction remains valid. We extensively evaluate our solution in synthetic and realistic simulations to define the impact of key parameters of our new model on global pessimism, computational overhead, and accuracy. Our results show that with complete knowledge of future channel conditions, our analytical model can consistently upper-bound the simulated worst-case latencies. Even with limited knowledge about future channel conditions, using state-of-the-art forecasting methods, our approach still bounds 99.8% of actual latencies, demonstrating its robustness. With this, our works demonstrate that future 5G networks can enable safe and reliable real-time applications even in highly dynamic environments.
动态5G通信中实时时延预测的有时限解决方案
工业4.0和自动驾驶等领域越来越多地采用安全关键型应用,对第五代(5G)无线网络提出了严格的延迟要求。现有的方法通常依赖于延迟测量,仅在违规发生后才检测违规,或者依赖于预先规划的网络配置,这在移动设备通信等高度动态环境中是不切实际的。在这项工作中,我们提出了一种主动分析方法,用于在违规发生之前预测5G网络中的最坏情况延迟(wcl)。我们的方法可以解析地推导出延迟的上界,保证了可解释性和计算效率。此外,我们引入了有效性间隔(VI)的概念,它量化了延迟预测保持有效的时间。我们在合成和现实模拟中广泛评估了我们的解决方案,以确定我们新模型的关键参数对全球悲观主义、计算开销和准确性的影响。我们的结果表明,在完全了解未来通道条件的情况下,我们的分析模型可以一致地将模拟的最坏情况延迟上界。即使对未来通道条件的了解有限,使用最先进的预测方法,我们的方法仍然限制了99.8%的实际延迟,证明了它的稳健性。因此,我们的工作表明,未来的5G网络即使在高度动态的环境中也可以实现安全可靠的实时应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信