{"title":"Hybrid Feed Forward Neural Networks and Particle Swarm Optimization for Intelligent Self-Organization in the Industrial Communication Networks","authors":"M. Maragatharajan;Aanjankumar Sureshkumar;Rajesh Kumar Dhanaraj;E. Nirmala;Md Shohel Sayeed;Mohammad Tabrez Quasim;Shakila Basheer","doi":"10.1109/OJCOMS.2025.3559172","DOIUrl":null,"url":null,"abstract":"In recent times, the Industrial Communication Networks (ICNets) have been playing a vital role in advancing mobile generation networks, especially in the evolution of 6G networks. This research proposes a novel technique for self-organization that integrates Feed Forward Neural Network (FFNN) and Particle Swarm Optimization (PSO) to enhance the network management, optimization and adaptive learning in 6G. The traditional self-organization models in ICNets and 6G depends on rule-based heuristic, reinforcement learning and classical optimization techniques, which often struggle with high computational complexity, slow convergence rates, and suboptimal decision making. In contrast, FFNN+PSO fusion model leverages the predictive learning capability of FFNN and the global optimization strength of PSO to ensure intelligent self-optimization, real-time adaptability, and ultra-low-latency in the dynamically changing 6G environments. The experimental results demonstrate that the proposed method achieves a significantly higher accuracy of 98.25% by outperforming the existing models such as Random Forest (80%), Reinforcement learning (90%), Max Overlapping (88%), and Ant Colony Optimization (92%), Further, the proposed method enhances the energy efficiency, complex network function approximation, and collaborative optimization which make it an ideal choice for scalable and self-organization model in the 6G and ICNets. This study provides a transformative contribution to self-organization in the 6G networks and it offers robust, high-performance alternative to the conventional models as well it ensures massive device connectivity with intelligent network adaptation.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"3816-3833"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10960282","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10960282/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In recent times, the Industrial Communication Networks (ICNets) have been playing a vital role in advancing mobile generation networks, especially in the evolution of 6G networks. This research proposes a novel technique for self-organization that integrates Feed Forward Neural Network (FFNN) and Particle Swarm Optimization (PSO) to enhance the network management, optimization and adaptive learning in 6G. The traditional self-organization models in ICNets and 6G depends on rule-based heuristic, reinforcement learning and classical optimization techniques, which often struggle with high computational complexity, slow convergence rates, and suboptimal decision making. In contrast, FFNN+PSO fusion model leverages the predictive learning capability of FFNN and the global optimization strength of PSO to ensure intelligent self-optimization, real-time adaptability, and ultra-low-latency in the dynamically changing 6G environments. The experimental results demonstrate that the proposed method achieves a significantly higher accuracy of 98.25% by outperforming the existing models such as Random Forest (80%), Reinforcement learning (90%), Max Overlapping (88%), and Ant Colony Optimization (92%), Further, the proposed method enhances the energy efficiency, complex network function approximation, and collaborative optimization which make it an ideal choice for scalable and self-organization model in the 6G and ICNets. This study provides a transformative contribution to self-organization in the 6G networks and it offers robust, high-performance alternative to the conventional models as well it ensures massive device connectivity with intelligent network adaptation.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.