Segmentation-Driven Incremental Learning for Accurate Network Traffic Prediction

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Erina Takeshita;Tomoya Kosugi
{"title":"Segmentation-Driven Incremental Learning for Accurate Network Traffic Prediction","authors":"Erina Takeshita;Tomoya Kosugi","doi":"10.23919/comex.2024XBL0210","DOIUrl":null,"url":null,"abstract":"This study proposes a novel data segmentation method for incremental learning in network traffic prediction, leveraging change points in network configuration data (e.g., the number of users and network equipment). Isolating high-variance segments improves the incremental learning performance. Existing methods such as the PELT algorithm in ruptures face challenges in isolating high-variance segments and have the disadvantage of high computational costs. In contrast, the proposed method efficiently identifies high-variance segments by leveraging network configuration data as segmentation criteria. This approach not only circumvents the computational costs associated with parameter tuning but also facilitates more effective isolation of high-variance segments, leading to improved segmentation accuracy. Experiments show an average MSE of 1.799, outperforming baseline methods (No Segmentation: 2.846, RPT: 2.653) and enhancing prediction accuracy.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"14 05","pages":"170-173"},"PeriodicalIF":0.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10924591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10924591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a novel data segmentation method for incremental learning in network traffic prediction, leveraging change points in network configuration data (e.g., the number of users and network equipment). Isolating high-variance segments improves the incremental learning performance. Existing methods such as the PELT algorithm in ruptures face challenges in isolating high-variance segments and have the disadvantage of high computational costs. In contrast, the proposed method efficiently identifies high-variance segments by leveraging network configuration data as segmentation criteria. This approach not only circumvents the computational costs associated with parameter tuning but also facilitates more effective isolation of high-variance segments, leading to improved segmentation accuracy. Experiments show an average MSE of 1.799, outperforming baseline methods (No Segmentation: 2.846, RPT: 2.653) and enhancing prediction accuracy.
分段驱动的增量学习,用于准确的网络流量预测
本研究提出了一种新的数据分割方法,用于网络流量预测中的增量学习,利用网络配置数据的变化点(例如,用户和网络设备的数量)。隔离高方差段可以提高增量学习性能。现有方法如破裂中的PELT算法在分离高方差段方面面临挑战,并且具有计算成本高的缺点。相比之下,该方法利用网络配置数据作为分割标准,有效地识别出高方差段。这种方法不仅避免了与参数调优相关的计算成本,而且有助于更有效地隔离高方差段,从而提高分割精度。实验表明,平均MSE为1.799,优于基线方法(无分割:2.846,RPT: 2.653),提高了预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信