{"title":"Crack propagation behavior in metal matrix composites: A coupled nonlocal crystal plasticity and phase field modelling","authors":"Yukai Xiong , Jianfeng Zhao , Qinglei Zeng , Fuping Yuan , Xu Zhang","doi":"10.1016/j.jmps.2025.106164","DOIUrl":null,"url":null,"abstract":"<div><div>The aluminum matrix composite is known for its lightweight and high strength, while its application is limited in various fields due to its low fracture strain. Configuring reinforcements in metal matrix composites (MMCs) is effective in improving the strength-ductility synergy of metallic materials; however, the underlying mechanisms have yet to be elucidated, and an optimizing strategy is to be explored. This study developed a coupled crystal plasticity (CP) and phase field (PF) model to investigate the toughening mechanisms of MMCs. The CP module incorporates a dislocation flux-based nonlocal model, while the PF module considers the influence of geometrically necessary dislocations (GNDs) on crack initiation and propagation. This coupled model effectively captures the initiation of cracks near the interface due to the accumulation of GNDs at the grain boundary and particle surface. Systematic simulations comprehensively reveal the effects of particle distribution and particle strength on the fracture strain. The findings suggest that arranging particles near grain boundaries improves ductility when particle damage is ignored. However, experimental observations reveal that particles undergo damage during deformation. Only when particle damage is incorporated, does the model accurately reflect the enhanced ductility in scenarios where particles are distributed within the grain interior aligning better with experimental findings. This research enhances our understanding of the damage mechanisms in MMCs and provides valuable insights into their microstructural design.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"200 ","pages":"Article 106164"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625001401","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The aluminum matrix composite is known for its lightweight and high strength, while its application is limited in various fields due to its low fracture strain. Configuring reinforcements in metal matrix composites (MMCs) is effective in improving the strength-ductility synergy of metallic materials; however, the underlying mechanisms have yet to be elucidated, and an optimizing strategy is to be explored. This study developed a coupled crystal plasticity (CP) and phase field (PF) model to investigate the toughening mechanisms of MMCs. The CP module incorporates a dislocation flux-based nonlocal model, while the PF module considers the influence of geometrically necessary dislocations (GNDs) on crack initiation and propagation. This coupled model effectively captures the initiation of cracks near the interface due to the accumulation of GNDs at the grain boundary and particle surface. Systematic simulations comprehensively reveal the effects of particle distribution and particle strength on the fracture strain. The findings suggest that arranging particles near grain boundaries improves ductility when particle damage is ignored. However, experimental observations reveal that particles undergo damage during deformation. Only when particle damage is incorporated, does the model accurately reflect the enhanced ductility in scenarios where particles are distributed within the grain interior aligning better with experimental findings. This research enhances our understanding of the damage mechanisms in MMCs and provides valuable insights into their microstructural design.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.