Machine learning screening and DFT calculations for exploring Cs2Ag0.75X0.25BiCl6 (X=Na, K, Rb) double perovskites as underwater photovoltaic materials

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Changcheng Chen , Zhao Han , Yaxin Xu , Zhengjun Wang , Yali Tuo , Yuxi Du , Xiongfei Yun , Shaohang Shi , Jiangzhou Xie , Shuli Gao , Wen Chen , Chao Dong , Yuxiao Ji , Xiaoning Guan , Gang Liu , Pengfei Lu
{"title":"Machine learning screening and DFT calculations for exploring Cs2Ag0.75X0.25BiCl6 (X=Na, K, Rb) double perovskites as underwater photovoltaic materials","authors":"Changcheng Chen ,&nbsp;Zhao Han ,&nbsp;Yaxin Xu ,&nbsp;Zhengjun Wang ,&nbsp;Yali Tuo ,&nbsp;Yuxi Du ,&nbsp;Xiongfei Yun ,&nbsp;Shaohang Shi ,&nbsp;Jiangzhou Xie ,&nbsp;Shuli Gao ,&nbsp;Wen Chen ,&nbsp;Chao Dong ,&nbsp;Yuxiao Ji ,&nbsp;Xiaoning Guan ,&nbsp;Gang Liu ,&nbsp;Pengfei Lu","doi":"10.1016/j.solmat.2025.113674","DOIUrl":null,"url":null,"abstract":"<div><div>Underwater vehicles, sensors, and autonomous systems heavily rely on stable energy supplies, which remain a key limiting factor in their practical applications. Traditional silicon-based solar cells are restricted in underwater applications due to their low light absorption efficiency and poor mechanical stability. In this study, we employed machine learning to screen perovskite materials with suitable bandgaps and constructed a vacuum-ordered Cs<sub>2</sub>AgBiCl<sub>6</sub> double perovskite model. Subsequently, through first-principles calculations, we systematically investigated the structural, electronic, optical, and mechanical properties of Cs<sub>2</sub>Ag<sub>0</sub>.<sub>75</sub>X<sub>0</sub>.<sub>25</sub>BiCl<sub>6</sub> (X = Na, K, Rb) double perovskites to assess their potential in underwater photovoltaic devices. The results demonstrate that Cs<sub>2</sub>Ag<sub>0</sub>.<sub>75</sub>X<sub>0</sub>.<sub>25</sub>BiCl<sub>6</sub> double perovskites exhibit excellent photovoltaic performance, particularly with bandgaps between 1.8 and 2.3 eV, making them ideal for underwater photovoltaic applications. Optical calculations show that these materials have a high light absorption coefficient, reaching up to 1.56×10<sup>5</sup> cm<sup>−1</sup>. Cs<sub>2</sub>Ag<sub>0</sub>.<sub>75</sub>Na<sub>0</sub>.<sub>25</sub>BiCl<sub>6</sub>, in particular, achieved a power conversion efficiency of 19.18 % with a bandgap of 1.83 eV, exhibiting high light absorption capacity. In terms of mechanical performance, Cs<sub>2</sub>Ag<sub>0</sub>.<sub>75</sub>Rb<sub>0</sub>.<sub>25</sub>BiCl<sub>6</sub> displayed significant anisotropy, enhancing its mechanical stability under complex water flow conditions. In conclusion, the vacuum-ordered Cs<sub>2</sub>Ag<sub>0</sub>.<sub>75</sub>X<sub>0</sub>.<sub>25</sub>BiCl<sub>6</sub> double perovskites exhibit excellent overall performance, providing important theoretical support for the development of efficient and reliable underwater photovoltaic materials.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"289 ","pages":"Article 113674"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002752","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater vehicles, sensors, and autonomous systems heavily rely on stable energy supplies, which remain a key limiting factor in their practical applications. Traditional silicon-based solar cells are restricted in underwater applications due to their low light absorption efficiency and poor mechanical stability. In this study, we employed machine learning to screen perovskite materials with suitable bandgaps and constructed a vacuum-ordered Cs2AgBiCl6 double perovskite model. Subsequently, through first-principles calculations, we systematically investigated the structural, electronic, optical, and mechanical properties of Cs2Ag0.75X0.25BiCl6 (X = Na, K, Rb) double perovskites to assess their potential in underwater photovoltaic devices. The results demonstrate that Cs2Ag0.75X0.25BiCl6 double perovskites exhibit excellent photovoltaic performance, particularly with bandgaps between 1.8 and 2.3 eV, making them ideal for underwater photovoltaic applications. Optical calculations show that these materials have a high light absorption coefficient, reaching up to 1.56×105 cm−1. Cs2Ag0.75Na0.25BiCl6, in particular, achieved a power conversion efficiency of 19.18 % with a bandgap of 1.83 eV, exhibiting high light absorption capacity. In terms of mechanical performance, Cs2Ag0.75Rb0.25BiCl6 displayed significant anisotropy, enhancing its mechanical stability under complex water flow conditions. In conclusion, the vacuum-ordered Cs2Ag0.75X0.25BiCl6 double perovskites exhibit excellent overall performance, providing important theoretical support for the development of efficient and reliable underwater photovoltaic materials.

Abstract Image

探索Cs2Ag0.75X0.25BiCl6 (X=Na, K, Rb)双钙钛矿作为水下光伏材料的机器学习筛选和DFT计算
水下航行器、传感器和自主系统严重依赖稳定的能源供应,这仍然是其实际应用的关键限制因素。传统的硅基太阳能电池由于光吸收效率低、机械稳定性差,在水下的应用受到限制。在本研究中,我们利用机器学习筛选具有合适带隙的钙钛矿材料,构建了真空有序的Cs2AgBiCl6双钙钛矿模型。随后,通过第一性原理计算,我们系统地研究了Cs2Ag0.75X0.25BiCl6 (X = Na, K, Rb)双钙钛矿的结构、电子、光学和力学性能,以评估其在水下光伏器件中的潜力。结果表明,Cs2Ag0.75X0.25BiCl6双钙钛矿具有优异的光伏性能,特别是在1.8和2.3 eV之间的带隙,使其成为水下光伏应用的理想选择。光学计算表明,这些材料具有较高的光吸收系数,可达1.56×105 cm−1。其中,Cs2Ag0.75Na0.25BiCl6的功率转换效率为19.18%,带隙为1.83 eV,具有较高的光吸收能力。力学性能方面,Cs2Ag0.75Rb0.25BiCl6表现出显著的各向异性,增强了其在复杂水流条件下的力学稳定性。综上所述,真空有序Cs2Ag0.75X0.25BiCl6双钙钛矿具有优异的综合性能,为开发高效可靠的水下光伏材料提供了重要的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信